-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_longExp.py
217 lines (192 loc) · 11.5 KB
/
run_longExp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import argparse
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
import torch
from exp.exp_MSN import Exp_MSN
from exp.exp_EvoMSN import Exp_EvoMSN
from exp.exp_EvoMSN_FSNet import Exp_EvoMSN_FSNet
import random
import numpy as np
fix_seed = 2021
random.seed(fix_seed)
torch.manual_seed(fix_seed)
np.random.seed(fix_seed)
torch.set_num_threads(6)
parser = argparse.ArgumentParser(description='Autoformer & Transformer family for Time Series Forecasting')
# basic config
parser.add_argument('--is_training', type=int, default=1, help='status')
parser.add_argument('--model_id', type=str, default='test', help='model id')
parser.add_argument('--model', type=str, default='FEDformer',
help='model name, options: [Autoformer, Informer, Transformer]')
parser.add_argument('--exp', type=str, default='Exp_Main', help='experiment type, options: [Exp_Main, Exp_Norm, Exp_Bilevel, Exp_Koopa, Exp_Minmax]')
# statistics prediction module config
parser.add_argument('--station_type', type=str, default='adaptive', help='type of SAN, options: [none, adaptive, minmax_adaptive]')
parser.add_argument('--station_lr', type=float, default=0.0001)
parser.add_argument('--top_k', type=int, default=4, help='find top-k period')
parser.add_argument('--num_kernels', type=int, default=3, help='for Inception')
parser.add_argument('--station_pretrain_epochs', type=int, default=5, help='statistics model train epochs')
# data loader
parser.add_argument('--data', type=str, default='ETTh2', help='dataset type')
parser.add_argument('--root_path', type=str, default='./datasets/ETT-small', help='root path of the data file')
parser.add_argument('--data_path', type=str, default='ETTh2.csv', help='data file')
parser.add_argument('--features', type=str, default='M',
help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate')
parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
parser.add_argument('--freq', type=str, default='h',
help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
parser.add_argument('--scale', type=bool, default=True, help='Scale the whole data with StandardScaler()')
parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of forecast model checkpoints')
parser.add_argument('--stat_checkpoints', type=str, default='./stat_checkpoints/', help='location of stat model checkpoints')
# normalization
parser.add_argument('--revin', type=int, default=1, help='RevIN; True 1 False 0')
parser.add_argument('--affine', type=int, default=0, help='RevIN-affine; True 1 False 0')
parser.add_argument('--norm', type=str, default='none', help='normalization method, options:[none, revin, dishts]')
parser.add_argument('--dish_init', type=str, default='standard', help='ways to initialize DishTS parameters, options:[standard, avg, uniform]')
# forecasting task
parser.add_argument('--seq_len', type=int, default=96, help='input sequence length')
parser.add_argument('--label_len', type=int, default=48, help='start token length')
parser.add_argument('--pred_len', type=int, default=96, help='prediction sequence length')
parser.add_argument('--n_series', type=int, default=1, help='number of series')
parser.add_argument('--test_freq', type=int, default=1, help='online test frequency')
# optimization
parser.add_argument('--num_workers', type=int, default=0, help='data loader num workers')
parser.add_argument('--itr', type=int, default=1, help='experiments times')
parser.add_argument('--train_epochs', type=int, default=10, help='train epochs')
parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data')
parser.add_argument('--test_batch_size', type=int, default=32, help='batch size of test input data')
parser.add_argument('--patience', type=int, default=3, help='early stopping patience')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
parser.add_argument('--des', type=str, default='test', help='exp description')
parser.add_argument('--loss', type=str, default='mse', help='loss function')
parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate')
parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)
parser.add_argument('--online_learning', type=str, default='backbone', help='online strategy, options: [none, stat, backbone, stat_backbone]')
parser.add_argument('--buffer_size', type=int, default=1, help='Buffer size of test input data for backbone')
# supplementary config for FEDformer model
parser.add_argument('--version', type=str, default='Fourier',
help='for FEDformer, there are two versions to choose, options: [Fourier, Wavelets]')
parser.add_argument('--mode_select', type=str, default='random',
help='for FEDformer, there are two mode selection method, options: [random, low]')
parser.add_argument('--modes', type=int, default=64, help='modes to be selected random 64')
parser.add_argument('--L', type=int, default=3, help='ignore level')
parser.add_argument('--base', type=str, default='legendre', help='mwt base')
parser.add_argument('--cross_activation', type=str, default='tanh',
help='mwt cross atention activation function tanh or softmax')
# PatchTST
parser.add_argument('--fc_dropout', type=float, default=0.05, help='fully connected dropout')
parser.add_argument('--head_dropout', type=float, default=0.0, help='head dropout')
parser.add_argument('--patch_len', type=int, default=16, help='patch length')
parser.add_argument('--stride', type=int, default=8, help='stride')
parser.add_argument('--padding_patch', default='end', help='None: None; end: padding on the end')
parser.add_argument('--subtract_last', type=int, default=0, help='0: subtract mean; 1: subtract last')
parser.add_argument('--decomposition', type=int, default=0, help='decomposition; True 1 False 0')
parser.add_argument('--kernel_size', type=int, default=25, help='decomposition-kernel')
parser.add_argument('--individual_head', type=int, default=0, help='individual head; True 1 False 0')
# CrossFormer
parser.add_argument('--win_size', type=int, default=2, help='window size for segment merge')
parser.add_argument('--cross_factor', type=int, default=10, help='num of routers in Cross-Dimension Stage of TSA (c)')
# DLinear
parser.add_argument('--individual', action='store_true', default=False,
help='DLinear: a linear layer for each variate(channel) individually')
# Formers
parser.add_argument('--embed_type', type=int, default=0,
help='0: default 1: value embedding + temporal embedding + positional embedding 2: value embedding + temporal embedding 3: value embedding + positional embedding 4: value embedding')
parser.add_argument('--enc_in', type=int, default=7,
help='encoder input size') # DLinear with --individual, use this hyperparameter as the number of channels
parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
parser.add_argument('--c_out', type=int, default=7, help='output size')
parser.add_argument('--d_model', type=int, default=512, help='dimension of model')
parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn')
parser.add_argument('--moving_avg', type=int, default=25, help='window size of moving average')
parser.add_argument('--factor', type=int, default=3, help='attn factor')
parser.add_argument('--distil', action='store_false',
help='whether to use distilling in encoder, using this argument means not using distilling',
default=True)
parser.add_argument('--dropout', type=float, default=0.05, help='dropout')
parser.add_argument('--embed', type=str, default='timeF',
help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--activation', type=str, default='gelu', help='activation')
parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder')
parser.add_argument('--do_predict', action='store_true', help='whether to predict unseen future data')
# GPU
parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
parser.add_argument('--gpu', type=int, default=0, help='gpu')
parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
parser.add_argument('--devices', type=str, default='0,1,2,3', help='device ids of multile gpus')
parser.add_argument('--test_flop', action='store_true', default=False, help='See utils/tools for usage')
args = parser.parse_args()
if args.features == 'S':
args.enc_in, args.dec_in, args.c_out = 1, 1, 1
args.use_gpu = True if torch.cuda.is_available() and args.use_gpu else False
# print('gpu:', torch.cuda.is_available())
# print('use_gpu:', args.use_gpu)
if args.use_gpu and args.use_multi_gpu:
args.dvices = args.devices.replace(' ', '')
device_ids = args.devices.split(',')
args.device_ids = [int(id_) for id_ in device_ids]
args.gpu = args.device_ids[0]
print('Args in experiment:')
print(args)
exp_dict = {
'Exp_EvoMSN': Exp_EvoMSN,
'Exp_MSN': Exp_MSN,
'Exp_EvoMSN_FSNet': Exp_EvoMSN_FSNet
}
Exp = exp_dict[args.exp]
mses = []
maes = []
if args.is_training:
for ii in range(args.itr):
# setting record of experiments
setting = '{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_epoch{}_station{}_online{}_{}_{}'.format(
args.model_id,
args.model,
args.data,
args.features,
args.seq_len,
args.label_len,
args.pred_len,
args.d_model,
args.train_epochs,
args.station_type,
args.online_learning,
args.exp, ii)
exp = Exp(args) # set experiments
print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
exp.train(setting)
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
mse, mae = exp.test(setting)
mses.append(mse)
maes.append(mae)
if args.do_predict:
print('>>>>>>>predicting : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.predict(setting, True)
torch.cuda.empty_cache()
print('average mse:{0:.3f}±{1:.3f}, mae:{2:.3f}±{3:.3f}'.format(np.mean(mses), np.std(mses), np.mean(maes),
np.std(maes)))
else:
ii = 0
setting = '{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_epoch{}_scale{}_station{}_cotrain{}_online{}_{}_{}_{}'.format(
args.model_id,
args.model,
args.data,
args.features,
args.seq_len,
args.label_len,
args.pred_len,
args.d_model,
args.train_epochs,
args.scale,
args.station_type,
args.cotrain,
args.online_learning,
args.norm,
args.exp, ii)
exp = Exp(args) # set experiments
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.test(setting, test=1)
torch.cuda.empty_cache()