@@ -96,16 +96,24 @@ From mathcomp Require Import choice fintype finfun bigop prime binomial.
96
96
(* such that val is a ring morphism *)
97
97
(* The HB class is called SubField. *)
98
98
(* *)
99
- (* Morphisms between the above structures: *)
99
+ (* Morphisms between the above structures (see below for details): *)
100
100
(* *)
101
- (* Additive.type U V == semi additive (resp. additive) functions between *)
102
- (* nmodType (resp. zmodType) instances U and V *)
103
- (* RMorphism.type R S == semi ring (resp. ring) morphism between *)
104
- (* semiRingType (resp. ringType) instances R and S *)
101
+ (* {additive U -> V} == semi additive (resp. additive) functions between *)
102
+ (* nmodType (resp. zmodType) instances U and V. This *)
103
+ (* is a notation for the HB type Additive.type U V *)
104
+ (* {rmorphism R -> S} == semi ring (resp. ring) morphism between *)
105
+ (* semiRingType (resp. ringType) instances R and S. *)
106
+ (* notation for RMorphism.type R S *)
105
107
(* GRing.Scale.law R V == scaling morphism : R -> V -> V *)
106
108
(* The HB class is called GRing.Scale.Law. *)
107
- (* Linear.type R U V == linear functions : U -> V *)
108
- (* LRMorphism.type R A B == linear ring morphisms, i.e., algebra morphisms *)
109
+ (* {linear U -> V} == linear functions : U -> V, notation for *)
110
+ (* @Linear.type R U V s where the base ring R and *)
111
+ (* the scaling map s are inferred from the L-module *)
112
+ (* structure of U and V *)
113
+ (* {lrmorphism A -> B} == linear ring morphisms, i.e., algebra morphisms *)
114
+ (* notation for @LRMorphism.type R A B s where the *)
115
+ (* base ring R and scaling map s are inferred from *)
116
+ (* L-algebra structures of A and B *)
109
117
(* *)
110
118
(* Closedness predicates for the algebraic structures: *)
111
119
(* *)
@@ -141,7 +149,7 @@ From mathcomp Require Import choice fintype finfun bigop prime binomial.
141
149
(* The HB class is called DivalgClosed. *)
142
150
(* *)
143
151
(* Canonical properties of the algebraic structures: *)
144
- (* * nmodType (additive abelian monoids): *)
152
+ (* * NmodType (additive abelian monoids): *)
145
153
(* 0 == the zero (additive identity) of a Nmodule *)
146
154
(* x + y == the sum of x and y (in a Nmodule) *)
147
155
(* x *+ n == n times x, with n in nat (non-negative), i.e., *)
@@ -157,7 +165,7 @@ From mathcomp Require Import choice fintype finfun bigop prime binomial.
157
165
(* base type is a nmodType and whose predicate's is *)
158
166
(* a nmodClosed *)
159
167
(* *)
160
- (* * zmodType (additive abelian groups): *)
168
+ (* * ZmodType (additive abelian groups): *)
161
169
(* - x == the opposite (additive inverse) of x *)
162
170
(* x - y == the difference of x and y; this is only notation *)
163
171
(* for x + (- y) *)
0 commit comments