@@ -151,8 +151,9 @@ class Dense(HybridBlock):
151
151
created by the layer, and `bias` is a bias vector created by the layer
152
152
(only applicable if `use_bias` is `True`).
153
153
154
- Note: the input must be a tensor with rank 2. Use `flatten` to convert it
155
- to rank 2 manually if necessary.
154
+ .. note::
155
+ the input must be a tensor with rank 2. Use `flatten` to convert it
156
+ to rank 2 manually if necessary.
156
157
157
158
Parameters
158
159
----------
@@ -379,11 +380,13 @@ class Embedding(HybridBlock):
379
380
r"""Turns non-negative integers (indexes/tokens) into dense vectors
380
381
of fixed size. eg. [4, 20] -> [[0.25, 0.1], [0.6, -0.2]]
381
382
382
- Note: if `sparse_grad` is set to True, the gradient w.r.t weight will be
383
- sparse. Only a subset of optimizers support sparse gradients, including SGD, AdaGrad
384
- and Adam. By default lazy updates is turned on, which may perform differently
385
- from standard updates. For more details, please check the Optimization API at:
386
- https://mxnet.incubator.apache.org/api/python/optimization/optimization.html
383
+ .. note::
384
+ if `sparse_grad` is set to True, the gradient w.r.t weight will be
385
+ sparse. Only a subset of optimizers support sparse gradients, including SGD,
386
+ AdaGrad and Adam. By default lazy updates is turned on, which may perform
387
+ differently from standard updates. For more details, please check the
388
+ Optimization API at:
389
+ https://mxnet.incubator.apache.org/api/python/optimization/optimization.html
387
390
388
391
Parameters
389
392
----------
0 commit comments