-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbigquery.py
756 lines (635 loc) · 25.4 KB
/
bigquery.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""IPython Magics
.. function:: ``%%bigquery`` or ``%%bqsql``
IPython cell magic to run a query and display the result as a DataFrame
.. code-block:: python
%%bqsql [<destination_var>] [--project <project>] [--use_legacy_sql]
[--verbose] [--params <params>]
<query>
Parameters:
* ``<destination_var>`` (Optional[line argument]):
variable to store the query results. The results are not displayed if
this parameter is used. If an error occurs during the query execution,
the corresponding ``QueryJob`` instance (if available) is stored in
the variable instead. Set ``bigquery_magics.context.default_variable``
to set a destination variable without specifying this argument.
* ``--destination_table`` (Optional[line argument]):
A dataset and table to store the query results. If table does not exists,
it will be created. If table already exists, its data will be overwritten.
Variable should be in a format <dataset_id>.<table_id>.
* ``--no_query_cache`` (Optional[line argument]):
Do not use cached query results.
* ``--project <project>`` (Optional[line argument]):
Project to use for running the query. Defaults to the context
:attr:`~google.cloud.bigquery.magics.Context.project`.
* ``--use_bqstorage_api`` (Optional[line argument]):
[Deprecated] Not used anymore, as BigQuery Storage API is used by default.
* ``--use_rest_api`` (Optional[line argument]):
Use the BigQuery REST API instead of the Storage API.
* ``--use_legacy_sql`` (Optional[line argument]):
Runs the query using Legacy SQL syntax. Defaults to Standard SQL if
this argument not used.
* ``--verbose`` (Optional[line argument]):
If this flag is used, information including the query job ID and the
amount of time for the query to complete will not be cleared after the
query is finished. By default, this information will be displayed but
will be cleared after the query is finished.
* ``--params <params>`` (Optional[line argument]):
If present, the argument following the ``--params`` flag must be
either:
* :class:`str` - A JSON string representation of a dictionary in the
format ``{"param_name": "param_value"}`` (ex. ``{"num": 17}``). Use
of the parameter in the query should be indicated with
``@param_name``. See ``In[5]`` in the Examples section below.
* :class:`dict` reference - A reference to a ``dict`` in the format
``{"param_name": "param_value"}``, where the value types must be JSON
serializable. The variable reference is indicated by a ``$`` before
the variable name (ex. ``$my_dict_var``). See ``In[6]`` and ``In[7]``
in the Examples section below.
* ``<query>`` (required, cell argument):
SQL query to run. If the query does not contain any whitespace (aside
from leading and trailing whitespace), it is assumed to represent a
fully-qualified table ID, and the latter's data will be fetched.
Returns:
A :class:`pandas.DataFrame` or :class:`bigframes.pandas.DataFrame`
with the query results, depending on the ``engine`` chosen.
.. note::
All queries run using this magic will run using the context
:attr:`~bigquery_magics.config.Context.credentials`.
"""
from __future__ import print_function
import ast
from concurrent import futures
import copy
import re
import sys
import time
from typing import Any, List, Tuple
import warnings
import IPython # type: ignore
from IPython import display # type: ignore
from IPython.core import magic_arguments # type: ignore
from IPython.core.getipython import get_ipython
from google.api_core import client_info
from google.api_core.exceptions import NotFound
from google.cloud import bigquery
from google.cloud.bigquery import exceptions
from google.cloud.bigquery.dataset import DatasetReference
from google.cloud.bigquery.dbapi import _helpers
from google.cloud.bigquery.job import QueryJobConfig
from bigquery_magics import line_arg_parser as lap
import bigquery_magics._versions_helpers
import bigquery_magics.config
import bigquery_magics.line_arg_parser.exceptions
import bigquery_magics.version
try:
from google.cloud import bigquery_storage # type: ignore
except ImportError:
bigquery_storage = None
try:
import bigframes.pandas as bpd
except ImportError:
bpd = None
USER_AGENT = f"ipython-{IPython.__version__} bigquery-magics/{bigquery_magics.version.__version__}"
context = bigquery_magics.config.context
def _handle_error(error, destination_var=None):
"""Process a query execution error.
Args:
error (Exception):
An exception that occurred during the query execution.
destination_var (Optional[str]):
The name of the IPython session variable to store the query job.
"""
if destination_var:
query_job = getattr(error, "query_job", None)
if query_job is not None:
get_ipython().push({destination_var: query_job})
else:
# this is the case when previewing table rows by providing just
# table ID to cell magic
print(
"Could not save output to variable '{}'.".format(destination_var),
file=sys.stderr,
)
print("\nERROR:\n", str(error), file=sys.stderr)
def _run_query(client, query, job_config=None):
"""Runs a query while printing status updates
Args:
client (google.cloud.bigquery.client.Client):
Client to bundle configuration needed for API requests.
query (str):
SQL query to be executed. Defaults to the standard SQL dialect.
Use the ``job_config`` parameter to change dialects.
job_config (Optional[google.cloud.bigquery.job.QueryJobConfig]):
Extra configuration options for the job.
Returns:
google.cloud.bigquery.job.QueryJob: the query job created
Example:
>>> client = bigquery.Client()
>>> _run_query(client, "SELECT 17")
Executing query with job ID: bf633912-af2c-4780-b568-5d868058632b
Query executing: 1.66s
Query complete after 2.07s
'bf633912-af2c-4780-b568-5d868058632b'
"""
start_time = time.perf_counter()
query_job = client.query(query, job_config=job_config)
if job_config and job_config.dry_run:
return query_job
print(f"Executing query with job ID: {query_job.job_id}")
while True:
print(
f"\rQuery executing: {time.perf_counter() - start_time:.2f}s".format(),
end="",
)
try:
query_job.result(timeout=0.5)
break
except futures.TimeoutError:
continue
print(f"\nJob ID {query_job.job_id} successfully executed")
return query_job
def _create_dataset_if_necessary(client, dataset_id):
"""Create a dataset in the current project if it doesn't exist.
Args:
client (google.cloud.bigquery.client.Client):
Client to bundle configuration needed for API requests.
dataset_id (str):
Dataset id.
"""
dataset_reference = DatasetReference(client.project, dataset_id)
try:
dataset = client.get_dataset(dataset_reference)
return
except NotFound:
pass
dataset = bigquery.Dataset(dataset_reference)
dataset.location = client.location
print(f"Creating dataset: {dataset_id}")
dataset = client.create_dataset(dataset)
@magic_arguments.magic_arguments()
@magic_arguments.argument(
"destination_var",
nargs="?",
help=("If provided, save the output to this variable instead of displaying it."),
)
@magic_arguments.argument(
"--destination_table",
type=str,
default=None,
help=(
"If provided, save the output of the query to a new BigQuery table. "
"Variable should be in a format <dataset_id>.<table_id>. "
"If table does not exists, it will be created. "
"If table already exists, its data will be overwritten."
),
)
@magic_arguments.argument(
"--project",
type=str,
default=None,
help=("Project to use for executing this query. Defaults to the context project."),
)
@magic_arguments.argument(
"--max_results",
default=None,
help=(
"Maximum number of rows in dataframe returned from executing the query."
"Defaults to returning all rows."
),
)
@magic_arguments.argument(
"--maximum_bytes_billed",
default=None,
help=(
"maximum_bytes_billed to use for executing this query. Defaults to "
"the context default_query_job_config.maximum_bytes_billed."
),
)
@magic_arguments.argument(
"--dry_run",
action="store_true",
default=False,
help=(
"Sets query to be a dry run to estimate costs. "
"Defaults to executing the query instead of dry run if this argument is not used."
"Does not work with engine 'bigframes'. "
),
)
@magic_arguments.argument(
"--use_legacy_sql",
action="store_true",
default=False,
help=(
"Sets query to use Legacy SQL instead of Standard SQL. Defaults to "
"Standard SQL if this argument is not used."
),
)
@magic_arguments.argument(
"--bigquery_api_endpoint",
type=str,
default=None,
help=(
"The desired API endpoint, e.g., bigquery.googlepis.com. Defaults to this "
"option's value in the context bigquery_client_options."
),
)
@magic_arguments.argument(
"--bqstorage_api_endpoint",
type=str,
default=None,
help=(
"The desired API endpoint, e.g., bigquerystorage.googlepis.com. Defaults to "
"this option's value in the context bqstorage_client_options."
),
)
@magic_arguments.argument(
"--no_query_cache",
action="store_true",
default=False,
help=("Do not use cached query results."),
)
@magic_arguments.argument(
"--use_bqstorage_api",
action="store_true",
default=None,
help=(
"[Deprecated] The BigQuery Storage API is already used by default to "
"download large query results, and this option has no effect. "
"If you want to switch to the classic REST API instead, use the "
"--use_rest_api option."
),
)
@magic_arguments.argument(
"--use_rest_api",
action="store_true",
default=False,
help=(
"Use the classic REST API instead of the BigQuery Storage API to "
"download query results."
),
)
@magic_arguments.argument(
"--verbose",
action="store_true",
default=False,
help=(
"If set, print verbose output, including the query job ID and the "
"amount of time for the query to finish. By default, this "
"information will be displayed as the query runs, but will be "
"cleared after the query is finished."
"This flag is ignored when the engine is 'bigframes'."
),
)
@magic_arguments.argument(
"--params",
nargs="+",
default=None,
help=(
"Parameters to format the query string. If present, the --params "
"flag should be followed by a string representation of a dictionary "
"in the format {'param_name': 'param_value'} (ex. {\"num\": 17}), "
"or a reference to a dictionary in the same format. The dictionary "
"reference can be made by including a '$' before the variable "
"name (ex. $my_dict_var)."
),
)
@magic_arguments.argument(
"--progress_bar_type",
type=str,
default=None,
help=(
"Sets progress bar type to display a progress bar while executing the query."
"Defaults to use tqdm_notebook. Install the ``tqdm`` package to use this feature."
),
)
@magic_arguments.argument(
"--location",
type=str,
default=None,
help=(
"Set the location to execute query."
"Defaults to location set in query setting in console."
"This flag is ignored when the engine is 'bigframes'."
),
)
@magic_arguments.argument(
"--engine",
type=str,
default=None,
help=(
"Set the execution engine, either 'pandas' or 'bigframes'."
"Defaults to engine set in the query setting in console."
),
)
def _cell_magic(line, query):
"""Underlying function for bigquery cell magic
Note:
This function contains the underlying logic for the 'bigquery' cell
magic. This function is not meant to be called directly.
Args:
line (str): "%%bigquery" followed by arguments as required
query (str): SQL query to run
Returns:
pandas.DataFrame: the query results.
"""
params, args = _parse_magic_args(line)
query = query.strip()
if not query:
error = ValueError("Query is missing.")
_handle_error(error, args.destination_var)
return
query = _validate_and_resolve_query(query, args)
engine = args.engine or context.engine
if engine == "bigframes":
return _query_with_bigframes(query, params, args)
return _query_with_pandas(query, params, args)
def _parse_magic_args(line: str) -> Tuple[List[Any], Any]:
# The built-in parser does not recognize Python structures such as dicts, thus
# we extract the "--params" option and inteprpret it separately.
try:
params_option_value, rest_of_args = _split_args_line(line)
except lap.QueryParamsParseError as exc:
raise SyntaxError(
"--params is not a correctly formatted JSON string or a JSON "
"serializable dictionary"
) from exc
except lap.DuplicateQueryParamsError as exc:
raise ValueError("Duplicate --params option.") from exc
except lap.ParseError as exc:
raise ValueError(
"Unrecognized input, are option values correct? "
"Error details: {}".format(exc.args[0])
) from exc
params = []
if params_option_value:
# A non-existing params variable is not expanded and ends up in the input
# in its raw form, e.g. "$query_params".
if params_option_value.startswith("$"):
msg = 'Parameter expansion failed, undefined variable "{}".'.format(
params_option_value[1:]
)
raise NameError(msg)
params = _helpers.to_query_parameters(ast.literal_eval(params_option_value), {})
args = magic_arguments.parse_argstring(_cell_magic, rest_of_args)
if args.engine is not None and args.engine not in ("pandas", "bigframes"):
raise ValueError(f"Invalid engine: {args.engine}")
return params, args
def _split_args_line(line: str) -> Tuple[str, str]:
"""Split out the --params option value from the input line arguments.
Args:
line: The line arguments passed to the cell magic.
Returns:
A tuple of two strings. The first is param option value and
the second is the rest of the arguments.
"""
tree = lap.Parser(lap.Lexer(line)).input_line()
extractor = lap.QueryParamsExtractor()
params_option_value, rest_of_args = extractor.visit(tree)
return params_option_value, rest_of_args
def _query_with_bigframes(query: str, params: List[Any], args: Any):
if args.dry_run:
raise ValueError("Dry run is not supported by bigframes engine.")
if bpd is None:
raise ValueError("Bigframes package is not installed.")
bpd.options.bigquery.project = context.project
bpd.options.bigquery.credentials = context.credentials
max_results = int(args.max_results) if args.max_results else None
result = bpd.read_gbq_query(
query,
max_results=max_results,
configuration=_create_job_config(args, params).to_api_repr(),
)
return _handle_result(result, args)
def _query_with_pandas(query: str, params: List[Any], args: Any):
bq_client, bqstorage_client = _create_clients(args)
try:
return _make_bq_query(
query,
args=args,
params=params,
bq_client=bq_client,
bqstorage_client=bqstorage_client,
)
finally:
_close_transports(bq_client, bqstorage_client)
def _create_clients(args: Any) -> Tuple[bigquery.Client, Any]:
bigquery_client_options = copy.deepcopy(context.bigquery_client_options)
if args.bigquery_api_endpoint:
if isinstance(bigquery_client_options, dict):
bigquery_client_options["api_endpoint"] = args.bigquery_api_endpoint
else:
bigquery_client_options.api_endpoint = args.bigquery_api_endpoint
bq_client = bigquery.Client(
project=args.project or context.project,
credentials=context.credentials,
default_query_job_config=context.default_query_job_config,
client_info=client_info.ClientInfo(user_agent=USER_AGENT),
client_options=bigquery_client_options,
location=args.location,
)
if context._connection:
bq_client._connection = context._connection
# Check and instantiate bq storage client
if args.use_bqstorage_api is not None:
warnings.warn(
"Deprecated option --use_bqstorage_api, the BigQuery "
"Storage API is already used by default.",
category=DeprecationWarning,
)
use_bqstorage_api = not args.use_rest_api and (bigquery_storage is not None)
if not use_bqstorage_api:
return bq_client, None
bqstorage_client_options = copy.deepcopy(context.bqstorage_client_options)
if args.bqstorage_api_endpoint:
if isinstance(bqstorage_client_options, dict):
bqstorage_client_options["api_endpoint"] = args.bqstorage_api_endpoint
else:
bqstorage_client_options.api_endpoint = args.bqstorage_api_endpoint
bqstorage_client = _make_bqstorage_client(
bq_client,
bqstorage_client_options,
)
return bq_client, bqstorage_client
def _handle_result(result, args):
"""Determine the output of the cell, depending on options set.
If an explicit destination is set, that takes precedence. Write to that
variable and skip showing any results.
Otherwise, if there is a default variable set (such as if this module is
initialized by bigframes), then set that but also show the output.
Finally, there is no variable to save to, so just show the output.
"""
if args.destination_var:
get_ipython().push({args.destination_var: result})
return None
if context.default_variable:
# If a default variable is set, save the result _and_ show the results.
get_ipython().push({context.default_variable: result})
return result
def _make_bq_query(
query: str,
args: Any,
params: List[Any],
bq_client: bigquery.Client,
bqstorage_client: Any,
):
max_results = int(args.max_results) if args.max_results else None
# Any query that does not contain whitespace (aside from leading and trailing whitespace)
# is assumed to be a table id
if not re.search(r"\s", query):
try:
rows = bq_client.list_rows(query, max_results=max_results)
except Exception as ex:
_handle_error(ex, args.destination_var)
return
result = rows.to_dataframe(
bqstorage_client=bqstorage_client,
create_bqstorage_client=False,
)
return _handle_result(result, args)
job_config = _create_job_config(args, params)
if args.destination_table:
split = args.destination_table.split(".")
if len(split) != 2:
raise ValueError(
"--destination_table should be in a <dataset_id>.<table_id> format."
)
dataset_id, table_id = split
job_config.allow_large_results = True
dataset_ref = DatasetReference(bq_client.project, dataset_id)
destination_table_ref = dataset_ref.table(table_id)
job_config.destination = destination_table_ref
job_config.create_disposition = "CREATE_IF_NEEDED"
job_config.write_disposition = "WRITE_TRUNCATE"
_create_dataset_if_necessary(bq_client, dataset_id)
try:
query_job = _run_query(bq_client, query, job_config=job_config)
except Exception as ex:
_handle_error(ex, args.destination_var)
return
if not args.verbose:
display.clear_output()
if args.dry_run:
# TODO(tswast): Use _handle_result() here, too, but perhaps change the
# format to match the dry run schema from bigframes and pandas-gbq.
# See: https://github.com/googleapis/python-bigquery-pandas/issues/585
if args.destination_var:
get_ipython().push({args.destination_var: query_job})
return
else:
print(
"Query validated. This query will process {} bytes.".format(
query_job.total_bytes_processed
)
)
return query_job
progress_bar = context.progress_bar_type or args.progress_bar_type
if max_results:
result = query_job.result(max_results=max_results).to_dataframe(
bqstorage_client=None,
create_bqstorage_client=False,
progress_bar_type=progress_bar,
)
else:
result = query_job.to_dataframe(
bqstorage_client=bqstorage_client,
create_bqstorage_client=False,
progress_bar_type=progress_bar,
)
return _handle_result(result, args)
def _validate_and_resolve_query(query: str, args: Any) -> str:
# Check if query is given as a reference to a variable.
if not query.startswith("$"):
return query
query_var_name = query[1:]
if not query_var_name:
missing_msg = 'Missing query variable name, empty "$" is not allowed.'
raise NameError(missing_msg)
if query_var_name.isidentifier():
ip = get_ipython()
query = ip.user_ns.get(query_var_name, ip) # ip serves as a sentinel
if query is ip:
raise NameError(f"Unknown query, variable {query_var_name} does not exist.")
elif not isinstance(query, (str, bytes)):
raise TypeError(
f"Query variable {query_var_name} must be a string "
"or a bytes-like value."
)
return query
def _create_job_config(args: Any, params: List[Any]) -> QueryJobConfig:
job_config = QueryJobConfig()
job_config.query_parameters = params
job_config.use_legacy_sql = args.use_legacy_sql
job_config.dry_run = args.dry_run
# Don't override context job config unless --no_query_cache is explicitly set.
if args.no_query_cache:
job_config.use_query_cache = False
if args.maximum_bytes_billed == "None":
job_config.maximum_bytes_billed = 0
elif args.maximum_bytes_billed is not None:
value = int(args.maximum_bytes_billed)
job_config.maximum_bytes_billed = value
return job_config
def _make_bqstorage_client(client, client_options):
"""Creates a BigQuery Storage client.
Args:
client (:class:`~google.cloud.bigquery.client.Client`): BigQuery client.
client_options (:class:`google.api_core.client_options.ClientOptions`):
Custom options used with a new BigQuery Storage client instance
if one is created.
Raises:
ImportError: if google-cloud-bigquery-storage is not installed, or
grpcio package is not installed.
Returns:
None: if ``use_bqstorage_api == False``, or google-cloud-bigquery-storage
is outdated.
BigQuery Storage Client:
"""
try:
bigquery_magics._versions_helpers.BQ_STORAGE_VERSIONS.try_import(
raise_if_error=True
)
except exceptions.BigQueryStorageNotFoundError as err:
customized_error = ImportError(
"The default BigQuery Storage API client cannot be used, install "
"the missing google-cloud-bigquery-storage and pyarrow packages "
"to use it. Alternatively, use the classic REST API by specifying "
"the --use_rest_api magic option."
)
raise customized_error from err
try:
from google.api_core.gapic_v1 import client_info as gapic_client_info
except ImportError as err:
customized_error = ImportError(
"Install the grpcio package to use the BigQuery Storage API."
)
raise customized_error from err
return client._ensure_bqstorage_client(
client_options=client_options,
client_info=gapic_client_info.ClientInfo(user_agent=USER_AGENT),
)
def _close_transports(client, bqstorage_client):
"""Close the given clients' underlying transport channels.
Closing the transport is needed to release system resources, namely open
sockets.
Args:
client (:class:`~google.cloud.bigquery.client.Client`):
bqstorage_client
(Optional[:class:`~google.cloud.bigquery_storage.BigQueryReadClient`]):
A client for the BigQuery Storage API.
"""
client.close()
if bqstorage_client is not None:
bqstorage_client._transport.grpc_channel.close()