@@ -39,12 +39,12 @@ def test_xgbregressor_model_score(
39
39
result = penguins_xgbregressor_model .score (X_test , y_test ).to_pandas ()
40
40
expected = pandas .DataFrame (
41
41
{
42
- "mean_absolute_error" : [108.77582 ],
43
- "mean_squared_error" : [20943.272738 ],
44
- "mean_squared_log_error" : [0.00135 ],
45
- "median_absolute_error" : [86.313477 ],
46
- "r2_score" : [0.967571 ],
47
- "explained_variance" : [0.967609 ],
42
+ "mean_absolute_error" : [115.57598 ],
43
+ "mean_squared_error" : [23455.52121 ],
44
+ "mean_squared_log_error" : [0.00147 ],
45
+ "median_absolute_error" : [88.01318 ],
46
+ "r2_score" : [0.96368 ],
47
+ "explained_variance" : [0.96384 ],
48
48
},
49
49
dtype = "Float64" ,
50
50
)
@@ -76,12 +76,12 @@ def test_xgbregressor_model_score_series(
76
76
result = penguins_xgbregressor_model .score (X_test , y_test ).to_pandas ()
77
77
expected = pandas .DataFrame (
78
78
{
79
- "mean_absolute_error" : [108.77582 ],
80
- "mean_squared_error" : [20943.272738 ],
81
- "mean_squared_log_error" : [0.00135 ],
82
- "median_absolute_error" : [86.313477 ],
83
- "r2_score" : [0.967571 ],
84
- "explained_variance" : [0.967609 ],
79
+ "mean_absolute_error" : [115.57598 ],
80
+ "mean_squared_error" : [23455.52121 ],
81
+ "mean_squared_log_error" : [0.00147 ],
82
+ "median_absolute_error" : [88.01318 ],
83
+ "r2_score" : [0.96368 ],
84
+ "explained_variance" : [0.96384 ],
85
85
},
86
86
dtype = "Float64" ,
87
87
)
@@ -136,12 +136,12 @@ def test_to_gbq_saved_xgbregressor_model_scores(
136
136
result = saved_model .score (X_test , y_test ).to_pandas ()
137
137
expected = pandas .DataFrame (
138
138
{
139
- "mean_absolute_error" : [109.016973 ],
140
- "mean_squared_error" : [20867.299758 ],
141
- "mean_squared_log_error" : [0.00135 ],
142
- "median_absolute_error" : [86.490234 ],
143
- "r2_score" : [0.967458 ],
144
- "explained_variance" : [0.967504 ],
139
+ "mean_absolute_error" : [115.57598 ],
140
+ "mean_squared_error" : [23455.52121 ],
141
+ "mean_squared_log_error" : [0.00147 ],
142
+ "median_absolute_error" : [88.01318 ],
143
+ "r2_score" : [0.96368 ],
144
+ "explained_variance" : [0.96384 ],
145
145
},
146
146
dtype = "Float64" ,
147
147
)
@@ -260,11 +260,11 @@ def test_to_gbq_saved_xgbclassifier_model_scores(
260
260
result = saved_model .score (X_test , y_test ).to_pandas ()
261
261
expected = pandas .DataFrame (
262
262
{
263
- "precision" : [1.0 ],
264
- "recall" : [1.0 ],
265
- "accuracy" : [1.0 ],
266
- "f1_score" : [1.0 ],
267
- "log_loss" : [0.331442 ],
263
+ "precision" : [0.662674 ],
264
+ "recall" : [0.664646 ],
265
+ "accuracy" : [0.994012 ],
266
+ "f1_score" : [0.663657 ],
267
+ "log_loss" : [0.374438 ],
268
268
"roc_auc" : [1.0 ],
269
269
},
270
270
dtype = "Float64" ,
0 commit comments