Skip to content

Commit aeccc48

Browse files
authored
test: adjust expectations in ml tests after bqml model update (#972)
1 parent cd62e60 commit aeccc48

File tree

1 file changed

+23
-23
lines changed

1 file changed

+23
-23
lines changed

tests/system/small/ml/test_ensemble.py

Lines changed: 23 additions & 23 deletions
Original file line numberDiff line numberDiff line change
@@ -39,12 +39,12 @@ def test_xgbregressor_model_score(
3939
result = penguins_xgbregressor_model.score(X_test, y_test).to_pandas()
4040
expected = pandas.DataFrame(
4141
{
42-
"mean_absolute_error": [108.77582],
43-
"mean_squared_error": [20943.272738],
44-
"mean_squared_log_error": [0.00135],
45-
"median_absolute_error": [86.313477],
46-
"r2_score": [0.967571],
47-
"explained_variance": [0.967609],
42+
"mean_absolute_error": [115.57598],
43+
"mean_squared_error": [23455.52121],
44+
"mean_squared_log_error": [0.00147],
45+
"median_absolute_error": [88.01318],
46+
"r2_score": [0.96368],
47+
"explained_variance": [0.96384],
4848
},
4949
dtype="Float64",
5050
)
@@ -76,12 +76,12 @@ def test_xgbregressor_model_score_series(
7676
result = penguins_xgbregressor_model.score(X_test, y_test).to_pandas()
7777
expected = pandas.DataFrame(
7878
{
79-
"mean_absolute_error": [108.77582],
80-
"mean_squared_error": [20943.272738],
81-
"mean_squared_log_error": [0.00135],
82-
"median_absolute_error": [86.313477],
83-
"r2_score": [0.967571],
84-
"explained_variance": [0.967609],
79+
"mean_absolute_error": [115.57598],
80+
"mean_squared_error": [23455.52121],
81+
"mean_squared_log_error": [0.00147],
82+
"median_absolute_error": [88.01318],
83+
"r2_score": [0.96368],
84+
"explained_variance": [0.96384],
8585
},
8686
dtype="Float64",
8787
)
@@ -136,12 +136,12 @@ def test_to_gbq_saved_xgbregressor_model_scores(
136136
result = saved_model.score(X_test, y_test).to_pandas()
137137
expected = pandas.DataFrame(
138138
{
139-
"mean_absolute_error": [109.016973],
140-
"mean_squared_error": [20867.299758],
141-
"mean_squared_log_error": [0.00135],
142-
"median_absolute_error": [86.490234],
143-
"r2_score": [0.967458],
144-
"explained_variance": [0.967504],
139+
"mean_absolute_error": [115.57598],
140+
"mean_squared_error": [23455.52121],
141+
"mean_squared_log_error": [0.00147],
142+
"median_absolute_error": [88.01318],
143+
"r2_score": [0.96368],
144+
"explained_variance": [0.96384],
145145
},
146146
dtype="Float64",
147147
)
@@ -260,11 +260,11 @@ def test_to_gbq_saved_xgbclassifier_model_scores(
260260
result = saved_model.score(X_test, y_test).to_pandas()
261261
expected = pandas.DataFrame(
262262
{
263-
"precision": [1.0],
264-
"recall": [1.0],
265-
"accuracy": [1.0],
266-
"f1_score": [1.0],
267-
"log_loss": [0.331442],
263+
"precision": [0.662674],
264+
"recall": [0.664646],
265+
"accuracy": [0.994012],
266+
"f1_score": [0.663657],
267+
"log_loss": [0.374438],
268268
"roc_auc": [1.0],
269269
},
270270
dtype="Float64",

0 commit comments

Comments
 (0)