-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathwindow_spec.py
174 lines (145 loc) · 4.94 KB
/
window_spec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from dataclasses import dataclass
import itertools
from typing import Optional, Set, Tuple, Union
import bigframes.core.ordering as orderings
# Unbound Windows
def unbound(
grouping_keys: Tuple[str, ...] = (),
min_periods: int = 0,
ordering: Tuple[orderings.OrderingExpression, ...] = (),
) -> WindowSpec:
"""
Create an unbound window.
Args:
grouping_keys:
Columns ids of grouping keys
min_periods (int, default 0):
Minimum number of input rows to generate output.
ordering:
Orders the rows within the window.
Returns:
WindowSpec
"""
return WindowSpec(
grouping_keys=grouping_keys, min_periods=min_periods, ordering=ordering
)
### Rows-based Windows
def rows(
grouping_keys: Tuple[str, ...] = (),
preceding: Optional[int] = None,
following: Optional[int] = None,
min_periods: int = 0,
ordering: Tuple[orderings.OrderingExpression, ...] = (),
) -> WindowSpec:
"""
Create a row-bounded window.
Args:
grouping_keys:
Columns ids of grouping keys
preceding:
number of preceding rows to include. If None, include all preceding rows
following:
number of following rows to include. If None, include all following rows
min_periods (int, default 0):
Minimum number of input rows to generate output.
ordering:
Ordering to apply on top of based dataframe ordering
Returns:
WindowSpec
"""
bounds = RowsWindowBounds(preceding=preceding, following=following)
return WindowSpec(
grouping_keys=grouping_keys,
bounds=bounds,
min_periods=min_periods,
ordering=ordering,
)
def cumulative_rows(
grouping_keys: Tuple[str, ...] = (), min_periods: int = 0
) -> WindowSpec:
"""
Create a expanding window that includes all preceding rows
Args:
grouping_keys:
Columns ids of grouping keys
min_periods (int, default 0):
Minimum number of input rows to generate output.
Returns:
WindowSpec
"""
bounds = RowsWindowBounds(following=0)
return WindowSpec(
grouping_keys=grouping_keys, bounds=bounds, min_periods=min_periods
)
def inverse_cumulative_rows(
grouping_keys: Tuple[str, ...] = (), min_periods: int = 0
) -> WindowSpec:
"""
Create a shrinking window that includes all following rows
Args:
grouping_keys:
Columns ids of grouping keys
min_periods (int, default 0):
Minimum number of input rows to generate output.
Returns:
WindowSpec
"""
bounds = RowsWindowBounds(preceding=0)
return WindowSpec(
grouping_keys=grouping_keys, bounds=bounds, min_periods=min_periods
)
### Struct Classes
@dataclass(frozen=True)
class RowsWindowBounds:
preceding: Optional[int] = None
following: Optional[int] = None
# TODO: Expand to datetime offsets
OffsetType = Union[float, int]
@dataclass(frozen=True)
class RangeWindowBounds:
preceding: Optional[OffsetType] = None
following: Optional[OffsetType] = None
@dataclass(frozen=True)
class WindowSpec:
"""
Specifies a window over which aggregate and analytic function may be applied.
grouping_keys: set of column ids to group on
preceding: Number of preceding rows in the window
following: Number of preceding rows in the window
ordering: List of columns ids and ordering direction to override base ordering
"""
grouping_keys: Tuple[str, ...] = tuple()
ordering: Tuple[orderings.OrderingExpression, ...] = tuple()
bounds: Union[RowsWindowBounds, RangeWindowBounds, None] = None
min_periods: int = 0
@property
def row_bounded(self):
"""
Whether the window is bounded by row offsets.
This is relevant for determining whether the window requires a total order
to calculate deterministically.
"""
return isinstance(self.bounds, RowsWindowBounds)
@property
def all_referenced_columns(self) -> Set[str]:
"""
Return list of all variables reference ind the window.
"""
ordering_vars = itertools.chain.from_iterable(
item.scalar_expression.unbound_variables for item in self.ordering
)
return set(itertools.chain(self.grouping_keys, ordering_vars))