|
| 1 | +# Vertex Generative AI SDK for Python |
| 2 | +The Vertex Generative AI SDK helps developers use Google's generative AI |
| 3 | +[Gemini models](http://cloud.google.com/vertex-ai/docs/generative-ai/multimodal/overview) |
| 4 | +and [PaLM language models](http://cloud.google.com/vertex-ai/docs/generative-ai/language-model-overview) |
| 5 | +to build AI-powered features and applications. |
| 6 | +The SDKs support use cases like the following: |
| 7 | + |
| 8 | +- Generate text from texts, images and videos (multimodal generation) |
| 9 | +- Build stateful multi-turn conversations (chat) |
| 10 | +- Function calling |
| 11 | + |
| 12 | +## Installation |
| 13 | + |
| 14 | +To install the |
| 15 | +[google-cloud-aiplatform](https://pypi.org/project/google-cloud-aiplatform/) |
| 16 | +Python package, run the following command: |
| 17 | + |
| 18 | +```shell |
| 19 | +pip3 install --upgrade --user "google-cloud-aiplatform>=1.38" |
| 20 | +``` |
| 21 | + |
| 22 | +## Usage |
| 23 | + |
| 24 | +For detailed instructions, see [quickstart](http://cloud.google.com/vertex-ai/docs/generative-ai/start/quickstarts/quickstart-multimodal) and [Introduction to multimodal classes in the Vertex AI SDK](http://cloud.google.com/vertex-ai/docs/generative-ai/multimodal/sdk-for-gemini/gemini-sdk-overview-reference). |
| 25 | + |
| 26 | +#### Imports: |
| 27 | +```python |
| 28 | +from vertexai.generative_models import GenerativeModel, Image, Content, Part, Tool, FunctionDeclaration, GenerationConfig |
| 29 | +``` |
| 30 | + |
| 31 | +#### Basic generation: |
| 32 | +```python |
| 33 | +from vertexai.generative_models import GenerativeModel |
| 34 | +model = GenerativeModel("gemini-pro") |
| 35 | +print(model.generate_content("Why is sky blue?")) |
| 36 | +``` |
| 37 | + |
| 38 | +#### Using images and videos |
| 39 | +```python |
| 40 | +from vertexai.generative_models import GenerativeModel, Image |
| 41 | +vision_model = GenerativeModel("gemini-pro-vision") |
| 42 | +
|
| 43 | +# Local image |
| 44 | +image = Image.load_from_file("image.jpg") |
| 45 | +print(vision_model.generate_content(["What is shown in this image?", image])) |
| 46 | +
|
| 47 | +# Image from Cloud Storage |
| 48 | +image_part = generative_models.Part.from_uri("gs://download.tensorflow.org/example_images/320px-Felis_catus-cat_on_snow.jpg", mime_type="image/jpeg") |
| 49 | +print(vision_model.generate_content([image_part, "Describe this image?"])) |
| 50 | +
|
| 51 | +# Text and video |
| 52 | +video_part = Part.from_uri("gs://cloud-samples-data/video/animals.mp4", mime_type="video/mp4") |
| 53 | +print(vision_model.generate_content(["What is in the video? ", video_part])) |
| 54 | +``` |
| 55 | + |
| 56 | +#### Chat |
| 57 | +``` |
| 58 | +from vertexai.generative_models import GenerativeModel, Image |
| 59 | +vision_model = GenerativeModel("gemini-ultra-vision") |
| 60 | +vision_chat = vision_model.start_chat() |
| 61 | +image = Image.load_from_file("image.jpg") |
| 62 | +print(vision_chat.send_message(["I like this image.", image])) |
| 63 | +print(vision_chat.send_message("What things do I like?.")) |
| 64 | +``` |
| 65 | + |
| 66 | +#### System instructions |
| 67 | +``` |
| 68 | +from vertexai.generative_models import GenerativeModel |
| 69 | +model = GenerativeModel( |
| 70 | + "gemini-1.0-pro", |
| 71 | + system_instruction=[ |
| 72 | + "Talk like a pirate.", |
| 73 | + "Don't use rude words.", |
| 74 | + ], |
| 75 | +) |
| 76 | +print(model.generate_content("Why is sky blue?")) |
| 77 | +``` |
| 78 | + |
| 79 | +#### Function calling |
| 80 | + |
| 81 | +``` |
| 82 | +# First, create tools that the model is can use to answer your questions. |
| 83 | +# Describe a function by specifying it's schema (JsonSchema format) |
| 84 | +get_current_weather_func = generative_models.FunctionDeclaration( |
| 85 | + name="get_current_weather", |
| 86 | + description="Get the current weather in a given location", |
| 87 | + parameters={ |
| 88 | + "type": "object", |
| 89 | + "properties": { |
| 90 | + "location": { |
| 91 | + "type": "string", |
| 92 | + "description": "The city and state, e.g. San Francisco, CA" |
| 93 | + }, |
| 94 | + "unit": { |
| 95 | + "type": "string", |
| 96 | + "enum": [ |
| 97 | + "celsius", |
| 98 | + "fahrenheit", |
| 99 | + ] |
| 100 | + } |
| 101 | + }, |
| 102 | + "required": [ |
| 103 | + "location" |
| 104 | + ] |
| 105 | + }, |
| 106 | +) |
| 107 | +# Tool is a collection of related functions |
| 108 | +weather_tool = generative_models.Tool( |
| 109 | + function_declarations=[get_current_weather_func], |
| 110 | +) |
| 111 | + |
| 112 | +# Use tools in chat: |
| 113 | +model = GenerativeModel( |
| 114 | + "gemini-pro", |
| 115 | + # You can specify tools when creating a model to avoid having to send them with every request. |
| 116 | + tools=[weather_tool], |
| 117 | +) |
| 118 | +chat = model.start_chat() |
| 119 | +# Send a message to the model. The model will respond with a function call. |
| 120 | +print(chat.send_message("What is the weather like in Boston?")) |
| 121 | +# Then send a function response to the model. The model will use it to answer. |
| 122 | +print(chat.send_message( |
| 123 | + Part.from_function_response( |
| 124 | + name="get_current_weather", |
| 125 | + response={ |
| 126 | + "content": {"weather": "super nice"}, |
| 127 | + } |
| 128 | + ), |
| 129 | +)) |
| 130 | +``` |
| 131 | + |
| 132 | + |
| 133 | +#### Automatic Function calling |
| 134 | + |
| 135 | +``` |
| 136 | +from vertexai.preview.generative_models import GenerativeModel, Tool, FunctionDeclaration, AutomaticFunctionCallingResponder |
| 137 | + |
| 138 | +# First, create functions that the model can use to answer your questions. |
| 139 | +def get_current_weather(location: str, unit: str = "centigrade"): |
| 140 | + """Gets weather in the specified location. |
| 141 | + |
| 142 | + Args: |
| 143 | + location: The location for which to get the weather. |
| 144 | + unit: Optional. Temperature unit. Can be Centigrade or Fahrenheit. Defaults to Centigrade. |
| 145 | + """ |
| 146 | + return dict( |
| 147 | + location=location, |
| 148 | + unit=unit, |
| 149 | + weather="Super nice, but maybe a bit hot.", |
| 150 | + ) |
| 151 | + |
| 152 | +# Infer function schema |
| 153 | +get_current_weather_func = FunctionDeclaration.from_func(get_current_weather) |
| 154 | +# Tool is a collection of related functions |
| 155 | +weather_tool = Tool( |
| 156 | + function_declarations=[get_current_weather_func], |
| 157 | +) |
| 158 | + |
| 159 | +# Use tools in chat: |
| 160 | +model = GenerativeModel( |
| 161 | + "gemini-pro", |
| 162 | + # You can specify tools when creating a model to avoid having to send them with every request. |
| 163 | + tools=[weather_tool], |
| 164 | +) |
| 165 | + |
| 166 | +# Activate automatic function calling: |
| 167 | +afc_responder = AutomaticFunctionCallingResponder( |
| 168 | + # Optional: |
| 169 | + max_automatic_function_calls=5, |
| 170 | +) |
| 171 | +chat = model.start_chat(responder=afc_responder) |
| 172 | +# Send a message to the model. The model will respond with a function call. |
| 173 | +# The SDK will automatically call the requested function and respond to the model. |
| 174 | +# The model will use the function call response to answer the original question. |
| 175 | +print(chat.send_message("What is the weather like in Boston?")) |
| 176 | +``` |
| 177 | + |
| 178 | +## Documentation |
| 179 | + |
| 180 | +You can find complete documentation for the Vertex AI SDKs and the Gemini model in the Google Cloud [documentation](https://cloud.google.com/vertex-ai/docs/generative-ai/learn/overview) |
| 181 | + |
| 182 | +## Contributing |
| 183 | + |
| 184 | +See [Contributing](https://github.com/googleapis/python-aiplatform/blob/main/CONTRIBUTING.rst) for more information on contributing to the Vertex AI Python SDK. |
| 185 | + |
| 186 | +## License |
| 187 | + |
| 188 | +The contents of this repository are licensed under the [Apache License, version 2.0](http://www.apache.org/licenses/LICENSE-2.0). |
0 commit comments