|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | + |
| 3 | +# Copyright 2023 Google LLC |
| 4 | +# |
| 5 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 6 | +# you may not use this file except in compliance with the License. |
| 7 | +# You may obtain a copy of the License at |
| 8 | +# |
| 9 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +# |
| 11 | +# Unless required by applicable law or agreed to in writing, software |
| 12 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | +# See the License for the specific language governing permissions and |
| 15 | +# limitations under the License. |
| 16 | +# |
| 17 | + |
| 18 | +# pylint: disable=protected-access,bad-continuation |
| 19 | +import pytest |
| 20 | +from typing import Iterable, MutableSequence, Optional |
| 21 | +from unittest import mock |
| 22 | + |
| 23 | +import vertexai |
| 24 | +from google.cloud.aiplatform import initializer |
| 25 | +from vertexai.preview import generative_models |
| 26 | +from vertexai.generative_models._generative_models import ( |
| 27 | + prediction_service, |
| 28 | + gapic_prediction_service_types, |
| 29 | + gapic_content_types, |
| 30 | +) |
| 31 | + |
| 32 | +_TEST_PROJECT = "test-project" |
| 33 | +_TEST_LOCATION = "us-central1" |
| 34 | + |
| 35 | + |
| 36 | +_RESPONSE_TEXT_PART_STRUCT = { |
| 37 | + "text": "The sky appears blue due to a phenomenon called Rayleigh scattering." |
| 38 | +} |
| 39 | + |
| 40 | +_RESPONSE_FUNCTION_CALL_PART_STRUCT = { |
| 41 | + "function_call": { |
| 42 | + "name": "get_current_weather", |
| 43 | + "args": { |
| 44 | + "fields": { |
| 45 | + "key": "location", |
| 46 | + "value": {"string_value": "Boston"}, |
| 47 | + } |
| 48 | + }, |
| 49 | + } |
| 50 | +} |
| 51 | + |
| 52 | +_RESPONSE_AFTER_FUNCTION_CALL_PART_STRUCT = { |
| 53 | + "text": "The weather in Boston is super nice!" |
| 54 | +} |
| 55 | + |
| 56 | +_RESPONSE_SAFETY_RATINGS_STRUCT = [ |
| 57 | + {"category": "HARM_CATEGORY_HARASSMENT", "probability": "NEGLIGIBLE"}, |
| 58 | + {"category": "HARM_CATEGORY_HATE_SPEECH", "probability": "NEGLIGIBLE"}, |
| 59 | + {"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "probability": "NEGLIGIBLE"}, |
| 60 | + {"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "probability": "NEGLIGIBLE"}, |
| 61 | +] |
| 62 | + |
| 63 | +_RESPONSE_CITATION_STRUCT = { |
| 64 | + "start_index": 528, |
| 65 | + "end_index": 656, |
| 66 | + "uri": "https://www.quora.com/What-makes-the-sky-blue-during-the-day", |
| 67 | +} |
| 68 | + |
| 69 | + |
| 70 | +_REQUEST_TOOL_STRUCT = { |
| 71 | + "function_declarations": [ |
| 72 | + { |
| 73 | + "name": "get_current_weather", |
| 74 | + "description": "Get the current weather in a given location", |
| 75 | + "parameters": { |
| 76 | + "type": "object", |
| 77 | + "properties": { |
| 78 | + "location": { |
| 79 | + "type": "string", |
| 80 | + "description": "The city and state, e.g. San Francisco, CA", |
| 81 | + }, |
| 82 | + "unit": { |
| 83 | + "type": "string", |
| 84 | + "enum": [ |
| 85 | + "celsius", |
| 86 | + "fahrenheit", |
| 87 | + ], |
| 88 | + }, |
| 89 | + }, |
| 90 | + "required": ["location"], |
| 91 | + }, |
| 92 | + } |
| 93 | + ] |
| 94 | +} |
| 95 | + |
| 96 | +_REQUEST_FUNCTION_PARAMETER_SCHEMA_STRUCT = { |
| 97 | + "type": "object", |
| 98 | + "properties": { |
| 99 | + "location": { |
| 100 | + "type": "string", |
| 101 | + "description": "The city and state, e.g. San Francisco, CA", |
| 102 | + }, |
| 103 | + "unit": { |
| 104 | + "type": "string", |
| 105 | + "enum": [ |
| 106 | + "celsius", |
| 107 | + "fahrenheit", |
| 108 | + ], |
| 109 | + }, |
| 110 | + }, |
| 111 | + "required": ["location"], |
| 112 | +} |
| 113 | + |
| 114 | + |
| 115 | +def mock_stream_generate_content( |
| 116 | + self, |
| 117 | + request: gapic_prediction_service_types.GenerateContentRequest, |
| 118 | + *, |
| 119 | + model: Optional[str] = None, |
| 120 | + contents: Optional[MutableSequence[gapic_content_types.Content]] = None, |
| 121 | +) -> Iterable[gapic_prediction_service_types.GenerateContentResponse]: |
| 122 | + is_continued_chat = len(request.contents) > 1 |
| 123 | + has_tools = bool(request.tools) |
| 124 | + |
| 125 | + if has_tools: |
| 126 | + has_function_response = any( |
| 127 | + "function_response" in content.parts[0] for content in request.contents |
| 128 | + ) |
| 129 | + needs_function_call = not has_function_response |
| 130 | + if needs_function_call: |
| 131 | + response_part_struct = _RESPONSE_FUNCTION_CALL_PART_STRUCT |
| 132 | + else: |
| 133 | + response_part_struct = _RESPONSE_AFTER_FUNCTION_CALL_PART_STRUCT |
| 134 | + elif is_continued_chat: |
| 135 | + response_part_struct = {"text": "Other planets may have different sky color."} |
| 136 | + else: |
| 137 | + response_part_struct = _RESPONSE_TEXT_PART_STRUCT |
| 138 | + |
| 139 | + response = gapic_prediction_service_types.GenerateContentResponse( |
| 140 | + candidates=[ |
| 141 | + gapic_content_types.Candidate( |
| 142 | + index=0, |
| 143 | + content=gapic_content_types.Content( |
| 144 | + # Model currently does not identify itself |
| 145 | + # role="model", |
| 146 | + parts=[ |
| 147 | + gapic_content_types.Part(response_part_struct), |
| 148 | + ], |
| 149 | + ), |
| 150 | + finish_reason=gapic_content_types.Candidate.FinishReason.STOP, |
| 151 | + safety_ratings=[ |
| 152 | + gapic_content_types.SafetyRating(rating) |
| 153 | + for rating in _RESPONSE_SAFETY_RATINGS_STRUCT |
| 154 | + ], |
| 155 | + citation_metadata=gapic_content_types.CitationMetadata( |
| 156 | + citations=[ |
| 157 | + gapic_content_types.Citation(_RESPONSE_CITATION_STRUCT), |
| 158 | + ] |
| 159 | + ), |
| 160 | + ), |
| 161 | + ], |
| 162 | + ) |
| 163 | + yield response |
| 164 | + |
| 165 | + |
| 166 | +@pytest.mark.usefixtures("google_auth_mock") |
| 167 | +class TestGenerativeModels: |
| 168 | + """Unit tests for the generative models.""" |
| 169 | + |
| 170 | + def setup_method(self): |
| 171 | + vertexai.init( |
| 172 | + project=_TEST_PROJECT, |
| 173 | + location=_TEST_LOCATION, |
| 174 | + ) |
| 175 | + |
| 176 | + def teardown_method(self): |
| 177 | + initializer.global_pool.shutdown(wait=True) |
| 178 | + |
| 179 | + @mock.patch.object( |
| 180 | + target=prediction_service.PredictionServiceClient, |
| 181 | + attribute="stream_generate_content", |
| 182 | + new=mock_stream_generate_content, |
| 183 | + ) |
| 184 | + def test_generate_content(self): |
| 185 | + model = generative_models.GenerativeModel("gemini-pro") |
| 186 | + response = model.generate_content("Why is sky blue?") |
| 187 | + assert response.text |
| 188 | + |
| 189 | + response2 = model.generate_content( |
| 190 | + "Why is sky blue?", |
| 191 | + generation_config=generative_models.GenerationConfig( |
| 192 | + temperature=0.2, |
| 193 | + top_p=0.9, |
| 194 | + top_k=20, |
| 195 | + candidate_count=1, |
| 196 | + max_output_tokens=200, |
| 197 | + stop_sequences=["\n\n\n"], |
| 198 | + ), |
| 199 | + ) |
| 200 | + assert response2.text |
| 201 | + |
| 202 | + @mock.patch.object( |
| 203 | + target=prediction_service.PredictionServiceClient, |
| 204 | + attribute="stream_generate_content", |
| 205 | + new=mock_stream_generate_content, |
| 206 | + ) |
| 207 | + def test_generate_content_streaming(self): |
| 208 | + model = generative_models.GenerativeModel("gemini-pro") |
| 209 | + stream = model.generate_content("Why is sky blue?", stream=True) |
| 210 | + for chunk in stream: |
| 211 | + assert chunk.text |
| 212 | + |
| 213 | + @mock.patch.object( |
| 214 | + target=prediction_service.PredictionServiceClient, |
| 215 | + attribute="stream_generate_content", |
| 216 | + new=mock_stream_generate_content, |
| 217 | + ) |
| 218 | + def test_chat_send_message(self): |
| 219 | + model = generative_models.GenerativeModel("gemini-pro") |
| 220 | + chat = model.start_chat() |
| 221 | + response1 = chat.send_message("Why is sky blue?") |
| 222 | + assert response1.text |
| 223 | + response2 = chat.send_message("Is sky blue on other planets?") |
| 224 | + assert response2.text |
| 225 | + |
| 226 | + @mock.patch.object( |
| 227 | + target=prediction_service.PredictionServiceClient, |
| 228 | + attribute="stream_generate_content", |
| 229 | + new=mock_stream_generate_content, |
| 230 | + ) |
| 231 | + def test_chat_function_calling(self): |
| 232 | + get_current_weather_func = generative_models.FunctionDeclaration( |
| 233 | + name="get_current_weather", |
| 234 | + description="Get the current weather in a given location", |
| 235 | + parameters=_REQUEST_FUNCTION_PARAMETER_SCHEMA_STRUCT, |
| 236 | + ) |
| 237 | + weather_tool = generative_models.Tool( |
| 238 | + function_declarations=[get_current_weather_func], |
| 239 | + ) |
| 240 | + |
| 241 | + model = generative_models.GenerativeModel( |
| 242 | + "gemini-pro", |
| 243 | + # Specifying the tools once to avoid specifying them in every request |
| 244 | + tools=[weather_tool], |
| 245 | + ) |
| 246 | + chat = model.start_chat() |
| 247 | + |
| 248 | + response1 = chat.send_message("What is the weather like in Boston?") |
| 249 | + assert ( |
| 250 | + response1.candidates[0].content.parts[0].function_call.name |
| 251 | + == "get_current_weather" |
| 252 | + ) |
| 253 | + response2 = chat.send_message( |
| 254 | + generative_models.Part.from_function_response( |
| 255 | + name="get_current_weather", |
| 256 | + response={ |
| 257 | + "content": {"weather_there": "super nice"}, |
| 258 | + }, |
| 259 | + ), |
| 260 | + ) |
| 261 | + assert response2.text == "The weather in Boston is super nice!" |
0 commit comments