|
| 1 | +# Copyright 2025 Google LLC |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | +# |
| 15 | + |
| 16 | +from unittest import mock |
| 17 | + |
| 18 | +from google import auth |
| 19 | +from google.auth import credentials as auth_credentials |
| 20 | +import vertexai |
| 21 | +from google.cloud.aiplatform import initializer |
| 22 | +from google.cloud.aiplatform_v1beta1.services import ( |
| 23 | + evaluation_service as gapic_evaluation_services, |
| 24 | +) |
| 25 | +from google.cloud.aiplatform_v1beta1.types import ( |
| 26 | + evaluation_service as gapic_evaluation_service_types, |
| 27 | +) |
| 28 | +from vertexai import generative_models |
| 29 | +from vertexai.preview.evaluation import eval_task |
| 30 | +from vertexai.preview.evaluation.metrics import ( |
| 31 | + predefined_rubric_metrics, |
| 32 | +) |
| 33 | +import pandas as pd |
| 34 | +import pytest |
| 35 | + |
| 36 | + |
| 37 | +PredefinedRubricMetrics = predefined_rubric_metrics.PredefinedRubricMetrics |
| 38 | +EvalTask = eval_task.EvalTask |
| 39 | +_TEST_PROJECT = "test-project" |
| 40 | +_TEST_LOCATION = "us-central1" |
| 41 | +_TEST_EVAL_DATASET = pd.DataFrame( |
| 42 | + { |
| 43 | + "prompt": ["test_prompt", "text_prompt", "test_prompt_3"], |
| 44 | + "response": ["test", "text", "test_response_3"], |
| 45 | + } |
| 46 | +) |
| 47 | +_TEST_PAIRWISE_EVAL_DATASET = pd.DataFrame( |
| 48 | + { |
| 49 | + "prompt": ["test_prompt", "text_prompt", "test_prompt_3"], |
| 50 | + "response": ["test", "text", "test_response_3"], |
| 51 | + "baseline_model_response": ["test", "text", "test_response_3"], |
| 52 | + } |
| 53 | +) |
| 54 | +_TEST_MULTIMODAL_EVAL_DATASET = pd.DataFrame( |
| 55 | + { |
| 56 | + "prompt": ["test_prompt", "text_prompt"], |
| 57 | + "image": [ |
| 58 | + ( |
| 59 | + '{"contents": [{"parts": [{"file_data": {"mime_type": "image/png",' |
| 60 | + ' "file_uri": "gs://test-bucket/image3.png"}}]}]}' |
| 61 | + ), |
| 62 | + ( |
| 63 | + '{"contents": [{"parts": [{"file_data": {"mime_type": "image/png",' |
| 64 | + ' "file_uri": "gs://test-bucket/image4.png"}}]}]}' |
| 65 | + ), |
| 66 | + ], |
| 67 | + "response": ["test", "text"], |
| 68 | + } |
| 69 | +) |
| 70 | +_TEST_PAIRWISE_MULTIMODAL_EVAL_DATASET = pd.DataFrame( |
| 71 | + { |
| 72 | + "prompt": ["test_prompt", "text_prompt"], |
| 73 | + "image": [ |
| 74 | + ( |
| 75 | + '{"contents": [{"parts": [{"file_data": {"mime_type": "image/png",' |
| 76 | + ' "file_uri": "gs://test-bucket/image3.png"}}]}]}' |
| 77 | + ), |
| 78 | + ( |
| 79 | + '{"contents": [{"parts": [{"file_data": {"mime_type": "image/png",' |
| 80 | + ' "file_uri": "gs://test-bucket/image4.png"}}]}]}' |
| 81 | + ), |
| 82 | + ], |
| 83 | + "response": ["test", "text"], |
| 84 | + "baseline_model_response": ["test", "text"], |
| 85 | + } |
| 86 | +) |
| 87 | +_MOCK_RUBRIC_GENERATION_RESPONSE = generative_models.GenerationResponse.from_dict( |
| 88 | + { |
| 89 | + "candidates": [ |
| 90 | + { |
| 91 | + "content": { |
| 92 | + "parts": [{"text": """```json{"questions": ["test_rubric"]}```"""}] |
| 93 | + }, |
| 94 | + } |
| 95 | + ] |
| 96 | + } |
| 97 | +) |
| 98 | +_MOCK_POINTWISE_RESULT = gapic_evaluation_service_types.PointwiseMetricResult( |
| 99 | + custom_output=gapic_evaluation_service_types.CustomOutput( |
| 100 | + raw_outputs=gapic_evaluation_service_types.RawOutput( |
| 101 | + raw_output=[ |
| 102 | + """The appropriate rubrics for this prompt are: |
| 103 | + <question> |
| 104 | + STEP 1: ... |
| 105 | + Question: question 1 |
| 106 | + Verdict: yes |
| 107 | + </question> |
| 108 | + <question> |
| 109 | + STEP 1: ... |
| 110 | + Question: question 2 |
| 111 | + Verdict: no |
| 112 | + </question>""", |
| 113 | + """The appropriate rubrics for this prompt are: |
| 114 | + <question> |
| 115 | + STEP 1: ... |
| 116 | + Question: question 1 |
| 117 | + Verdict: yes |
| 118 | + </question> |
| 119 | + <question> |
| 120 | + STEP 1: ... |
| 121 | + Question: question 2 |
| 122 | + Verdict: no |
| 123 | + </question>""", |
| 124 | + ], |
| 125 | + ), |
| 126 | + ) |
| 127 | +) |
| 128 | +_MOCK_PAIRWISE_RESULT = gapic_evaluation_service_types.PairwiseMetricResult( |
| 129 | + custom_output=gapic_evaluation_service_types.CustomOutput( |
| 130 | + raw_outputs=gapic_evaluation_service_types.RawOutput( |
| 131 | + raw_output=[ |
| 132 | + """"[[Response A Answers:]]\n" |
| 133 | + "Response A\n" |
| 134 | + "[[Rubric Score:]]\n" |
| 135 | + "Rubric Score\n" |
| 136 | + "[[Response B Answers:]]\n" |
| 137 | + "Response A\n" |
| 138 | + "[[Rubric Score:]]\n" |
| 139 | + "Rubric Score\n" |
| 140 | + "[[SxS Rating: B > A]]""", |
| 141 | + """"[[Response A Answers:]]\n" |
| 142 | + "Response A\n" |
| 143 | + "[[Rubric Score:]]\n" |
| 144 | + "Rubric Score\n" |
| 145 | + "[[Response B Answers:]]\n" |
| 146 | + "Response A\n" |
| 147 | + "[[Rubric Score:]]\n" |
| 148 | + "Rubric Score\n" |
| 149 | + "[[SxS Rating: B > A]]""", |
| 150 | + ], |
| 151 | + ), |
| 152 | + ) |
| 153 | +) |
| 154 | +_MOCK_PAIRWISE_RESPONSE = ( |
| 155 | + gapic_evaluation_service_types.EvaluateInstancesResponse( |
| 156 | + pairwise_metric_result=_MOCK_PAIRWISE_RESULT |
| 157 | + ), |
| 158 | + gapic_evaluation_service_types.EvaluateInstancesResponse( |
| 159 | + pairwise_metric_result=_MOCK_PAIRWISE_RESULT |
| 160 | + ), |
| 161 | +) |
| 162 | +_MOCK_POINTWISE_RESPONSE = ( |
| 163 | + gapic_evaluation_service_types.EvaluateInstancesResponse( |
| 164 | + pointwise_metric_result=_MOCK_POINTWISE_RESULT |
| 165 | + ), |
| 166 | + gapic_evaluation_service_types.EvaluateInstancesResponse( |
| 167 | + pointwise_metric_result=_MOCK_POINTWISE_RESULT |
| 168 | + ), |
| 169 | +) |
| 170 | + |
| 171 | + |
| 172 | +@pytest.fixture(scope="module") |
| 173 | +def google_auth_mock(): |
| 174 | + with mock.patch.object(auth, "default") as google_auth_mock: |
| 175 | + google_auth_mock.return_value = ( |
| 176 | + auth_credentials.AnonymousCredentials(), |
| 177 | + _TEST_PROJECT, |
| 178 | + ) |
| 179 | + yield google_auth_mock |
| 180 | + |
| 181 | + |
| 182 | +@pytest.mark.usefixtures("google_auth_mock") |
| 183 | +class TestPredefinedRubricMetrics: |
| 184 | + def setup_method(self): |
| 185 | + vertexai.init( |
| 186 | + project=_TEST_PROJECT, |
| 187 | + location=_TEST_LOCATION, |
| 188 | + ) |
| 189 | + |
| 190 | + def teardown_method(self): |
| 191 | + initializer.global_pool.shutdown(wait=True) |
| 192 | + |
| 193 | + def test_pointwise_instruction_following_metric(self): |
| 194 | + metric = PredefinedRubricMetrics.Pointwise.INSTRUCTION_FOLLOWING |
| 195 | + mock_model = mock.create_autospec( |
| 196 | + generative_models.GenerativeModel, instance=True |
| 197 | + ) |
| 198 | + mock_model.generate_content.return_value = _MOCK_RUBRIC_GENERATION_RESPONSE |
| 199 | + mock_model._model_name = "publishers/google/model/gemini-1.0-pro" |
| 200 | + with mock.patch.object( |
| 201 | + target=gapic_evaluation_services.EvaluationServiceClient, |
| 202 | + attribute="evaluate_instances", |
| 203 | + side_effect=_MOCK_POINTWISE_RESPONSE, |
| 204 | + ): |
| 205 | + eval_result = EvalTask( |
| 206 | + dataset=_TEST_EVAL_DATASET, metrics=[metric] |
| 207 | + ).evaluate() |
| 208 | + assert eval_result.metrics_table.columns.tolist() == [ |
| 209 | + "prompt", |
| 210 | + "response", |
| 211 | + "rubrics", |
| 212 | + "rb_instruction_following/score", |
| 213 | + "rb_instruction_following/rubric_verdict_pairs", |
| 214 | + "rb_instruction_following/raw_outputs", |
| 215 | + ] |
| 216 | + |
| 217 | + def test_pairwise_instruction_following_metric(self): |
| 218 | + metric = PredefinedRubricMetrics.Pairwise.INSTRUCTION_FOLLOWING |
| 219 | + mock_model = mock.create_autospec( |
| 220 | + generative_models.GenerativeModel, instance=True |
| 221 | + ) |
| 222 | + mock_model.generate_content.return_value = _MOCK_RUBRIC_GENERATION_RESPONSE |
| 223 | + mock_model._model_name = "publishers/google/model/gemini-1.0-pro" |
| 224 | + with mock.patch.object( |
| 225 | + target=gapic_evaluation_services.EvaluationServiceClient, |
| 226 | + attribute="evaluate_instances", |
| 227 | + side_effect=_MOCK_PAIRWISE_RESPONSE, |
| 228 | + ): |
| 229 | + eval_result = EvalTask( |
| 230 | + dataset=_TEST_PAIRWISE_EVAL_DATASET, metrics=[metric] |
| 231 | + ).evaluate() |
| 232 | + assert eval_result.metrics_table.columns.tolist() == [ |
| 233 | + "prompt", |
| 234 | + "response", |
| 235 | + "baseline_model_response", |
| 236 | + "rubrics", |
| 237 | + "pairwise_rb_instruction_following/pairwise_choice", |
| 238 | + "pairwise_rb_instruction_following/score", |
| 239 | + "pairwise_rb_instruction_following/baseline_rubric_verdict_pairs", |
| 240 | + "pairwise_rb_instruction_following/candidate_rubric_verdict_pairs", |
| 241 | + "pairwise_rb_instruction_following/raw_outputs", |
| 242 | + ] |
| 243 | + |
| 244 | + def test_pointwise_text_quality_metric(self): |
| 245 | + metric = PredefinedRubricMetrics.Pointwise.TEXT_QUALITY |
| 246 | + mock_model = mock.create_autospec( |
| 247 | + generative_models.GenerativeModel, instance=True |
| 248 | + ) |
| 249 | + mock_model.generate_content.return_value = _MOCK_RUBRIC_GENERATION_RESPONSE |
| 250 | + mock_model._model_name = "publishers/google/model/gemini-1.0-pro" |
| 251 | + with mock.patch.object( |
| 252 | + target=gapic_evaluation_services.EvaluationServiceClient, |
| 253 | + attribute="evaluate_instances", |
| 254 | + side_effect=_MOCK_POINTWISE_RESPONSE, |
| 255 | + ): |
| 256 | + eval_result = EvalTask( |
| 257 | + dataset=_TEST_EVAL_DATASET, metrics=[metric] |
| 258 | + ).evaluate() |
| 259 | + assert eval_result.metrics_table.columns.tolist() == [ |
| 260 | + "prompt", |
| 261 | + "response", |
| 262 | + "rubrics", |
| 263 | + "rb_text_quality/score", |
| 264 | + "rb_text_quality/rubric_verdict_pairs", |
| 265 | + "rb_text_quality/raw_outputs", |
| 266 | + ] |
| 267 | + |
| 268 | + def test_pairwise_text_quality_metric(self): |
| 269 | + metric = PredefinedRubricMetrics.Pairwise.TEXT_QUALITY |
| 270 | + mock_model = mock.create_autospec( |
| 271 | + generative_models.GenerativeModel, instance=True |
| 272 | + ) |
| 273 | + mock_model.generate_content.return_value = _MOCK_RUBRIC_GENERATION_RESPONSE |
| 274 | + mock_model._model_name = "publishers/google/model/gemini-1.0-pro" |
| 275 | + with mock.patch.object( |
| 276 | + target=gapic_evaluation_services.EvaluationServiceClient, |
| 277 | + attribute="evaluate_instances", |
| 278 | + side_effect=_MOCK_PAIRWISE_RESPONSE, |
| 279 | + ): |
| 280 | + eval_result = EvalTask( |
| 281 | + dataset=_TEST_PAIRWISE_EVAL_DATASET, metrics=[metric] |
| 282 | + ).evaluate() |
| 283 | + assert eval_result.metrics_table.columns.tolist() == [ |
| 284 | + "prompt", |
| 285 | + "response", |
| 286 | + "baseline_model_response", |
| 287 | + "rubrics", |
| 288 | + "pairwise_rb_text_quality/pairwise_choice", |
| 289 | + "pairwise_rb_text_quality/score", |
| 290 | + "pairwise_rb_text_quality/baseline_rubric_verdict_pairs", |
| 291 | + "pairwise_rb_text_quality/candidate_rubric_verdict_pairs", |
| 292 | + "pairwise_rb_text_quality/raw_outputs", |
| 293 | + ] |
| 294 | + |
| 295 | + def test_pointwise_multimodal_understanding_metric(self): |
| 296 | + metric = PredefinedRubricMetrics.Pointwise.MULTIMODAL_UNDERSTANDING |
| 297 | + mock_model = mock.create_autospec( |
| 298 | + generative_models.GenerativeModel, instance=True |
| 299 | + ) |
| 300 | + mock_model.generate_content.return_value = _MOCK_RUBRIC_GENERATION_RESPONSE |
| 301 | + mock_model._model_name = "publishers/google/model/gemini-1.0-pro" |
| 302 | + with mock.patch.object( |
| 303 | + target=gapic_evaluation_services.EvaluationServiceClient, |
| 304 | + attribute="evaluate_instances", |
| 305 | + side_effect=_MOCK_POINTWISE_RESPONSE, |
| 306 | + ): |
| 307 | + eval_result = EvalTask( |
| 308 | + dataset=_TEST_MULTIMODAL_EVAL_DATASET, metrics=[metric] |
| 309 | + ).evaluate() |
| 310 | + assert eval_result.metrics_table.columns.tolist() == [ |
| 311 | + "prompt", |
| 312 | + "image", |
| 313 | + "response", |
| 314 | + "rubrics", |
| 315 | + "rb_multimodal_understanding/score", |
| 316 | + "rb_multimodal_understanding/rubric_verdict_pairs", |
| 317 | + "rb_multimodal_understanding/raw_outputs", |
| 318 | + ] |
| 319 | + |
| 320 | + def test_pairwise_multimodal_understanding_metric(self): |
| 321 | + metric = PredefinedRubricMetrics.Pairwise.MULTIMODAL_UNDERSTANDING |
| 322 | + mock_model = mock.create_autospec( |
| 323 | + generative_models.GenerativeModel, instance=True |
| 324 | + ) |
| 325 | + mock_model.generate_content.return_value = _MOCK_RUBRIC_GENERATION_RESPONSE |
| 326 | + mock_model._model_name = "publishers/google/model/gemini-1.0-pro" |
| 327 | + with mock.patch.object( |
| 328 | + target=gapic_evaluation_services.EvaluationServiceClient, |
| 329 | + attribute="evaluate_instances", |
| 330 | + side_effect=_MOCK_PAIRWISE_RESPONSE, |
| 331 | + ): |
| 332 | + eval_result = EvalTask( |
| 333 | + dataset=_TEST_PAIRWISE_MULTIMODAL_EVAL_DATASET, metrics=[metric] |
| 334 | + ).evaluate() |
| 335 | + assert eval_result.metrics_table.columns.tolist() == [ |
| 336 | + "prompt", |
| 337 | + "image", |
| 338 | + "response", |
| 339 | + "baseline_model_response", |
| 340 | + "rubrics", |
| 341 | + "pairwise_rb_multimodal_understanding/pairwise_choice", |
| 342 | + "pairwise_rb_multimodal_understanding/score", |
| 343 | + "pairwise_rb_multimodal_understanding/baseline_rubric_verdict_pairs", |
| 344 | + "pairwise_rb_multimodal_understanding/candidate_rubric_verdict_pairs", |
| 345 | + "pairwise_rb_multimodal_understanding/raw_outputs", |
| 346 | + ] |
0 commit comments