@@ -37,6 +37,7 @@ def retrieval_query(
37
37
rag_corpora : Optional [List [str ]] = None ,
38
38
similarity_top_k : Optional [int ] = 10 ,
39
39
vector_distance_threshold : Optional [float ] = 0.3 ,
40
+ vector_search_alpha : Optional [float ] = 0.5 ,
40
41
) -> RetrieveContextsResponse :
41
42
"""Retrieve top k relevant docs/chunks.
42
43
@@ -54,6 +55,7 @@ def retrieval_query(
54
55
)],
55
56
similarity_top_k=2,
56
57
vector_distance_threshold=0.5,
58
+ vector_search_alpha=0.5,
57
59
)
58
60
```
59
61
@@ -67,6 +69,10 @@ def retrieval_query(
67
69
similarity_top_k: The number of contexts to retrieve.
68
70
vector_distance_threshold: Optional. Only return contexts with vector
69
71
distance smaller than the threshold.
72
+ vector_search_alpha: Optional. Controls the weight between dense and
73
+ sparse vector search results. The range is [0, 1], where 0 means
74
+ sparse vector search only and 1 means dense vector search only.
75
+ The default value is 0.5.
70
76
71
77
Returns:
72
78
RetrieveContextsResonse.
@@ -111,7 +117,13 @@ def retrieval_query(
111
117
)
112
118
113
119
vertex_rag_store .vector_distance_threshold = vector_distance_threshold
114
- query = RagQuery (text = text , similarity_top_k = similarity_top_k )
120
+ query = RagQuery (
121
+ text = text ,
122
+ similarity_top_k = similarity_top_k ,
123
+ ranking = RagQuery .Ranking (
124
+ alpha = vector_search_alpha ,
125
+ ),
126
+ )
115
127
request = RetrieveContextsRequest (
116
128
vertex_rag_store = vertex_rag_store ,
117
129
parent = parent ,
0 commit comments