@@ -4005,9 +4005,11 @@ def run(
4005
4005
For time series Datasets, all their data is exported to
4006
4006
training, to pick and choose from.
4007
4007
target_column (str):
4008
- Required. Name of the column that the Model is to predict values for.
4008
+ Required. Name of the column that the Model is to predict values for. This
4009
+ column must be unavailable at forecast.
4009
4010
time_column (str):
4010
4011
Required. Name of the column that identifies time order in the time series.
4012
+ This column must be available at forecast.
4011
4013
time_series_identifier_column (str):
4012
4014
Required. Name of the column that identifies the time series.
4013
4015
unavailable_at_forecast_columns (List[str]):
@@ -4046,7 +4048,7 @@ def run(
4046
4048
during Model training. The column must have numeric values between 0 and
4047
4049
10000 inclusively, and 0 value means that the row is ignored.
4048
4050
If the weight column field is not set, then all rows are assumed to have
4049
- equal weight of 1.
4051
+ equal weight of 1. This column must be available at forecast.
4050
4052
time_series_attribute_columns (List[str]):
4051
4053
Optional. Column names that should be used as attribute columns.
4052
4054
Each column is constant within a time series.
@@ -4078,7 +4080,7 @@ def run(
4078
4080
Applies only if [export_evaluated_data_items] is True and
4079
4081
[export_evaluated_data_items_bigquery_destination_uri] is specified.
4080
4082
quantiles (List[float]):
4081
- Quantiles to use for the `minizmize -quantile-loss`
4083
+ Quantiles to use for the `minimize -quantile-loss`
4082
4084
[AutoMLForecastingTrainingJob.optimization_objective]. This argument is required in
4083
4085
this case.
4084
4086
@@ -4236,9 +4238,11 @@ def _run(
4236
4238
For time series Datasets, all their data is exported to
4237
4239
training, to pick and choose from.
4238
4240
target_column (str):
4239
- Required. Name of the column that the Model is to predict values for.
4241
+ Required. Name of the column that the Model is to predict values for. This
4242
+ column must be unavailable at forecast.
4240
4243
time_column (str):
4241
4244
Required. Name of the column that identifies time order in the time series.
4245
+ This column must be available at forecast.
4242
4246
time_series_identifier_column (str):
4243
4247
Required. Name of the column that identifies the time series.
4244
4248
unavailable_at_forecast_columns (List[str]):
@@ -4286,7 +4290,7 @@ def _run(
4286
4290
during Model training. The column must have numeric values between 0 and
4287
4291
10000 inclusively, and 0 value means that the row is ignored.
4288
4292
If the weight column field is not set, then all rows are assumed to have
4289
- equal weight of 1.
4293
+ equal weight of 1. This column must be available at forecast.
4290
4294
time_series_attribute_columns (List[str]):
4291
4295
Optional. Column names that should be used as attribute columns.
4292
4296
Each column is constant within a time series.
@@ -4317,7 +4321,7 @@ def _run(
4317
4321
Applies only if [export_evaluated_data_items] is True and
4318
4322
[export_evaluated_data_items_bigquery_destination_uri] is specified.
4319
4323
quantiles (List[float]):
4320
- Quantiles to use for the `minizmize -quantile-loss`
4324
+ Quantiles to use for the `minimize -quantile-loss`
4321
4325
[AutoMLForecastingTrainingJob.optimization_objective]. This argument is required in
4322
4326
this case.
4323
4327
0 commit comments