|
| 1 | +# Copyright 2024 The AI Edge Torch Authors. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | +# ============================================================================== |
| 15 | +# Testing weight loader utilities. |
| 16 | + |
| 17 | +import os |
| 18 | +import tempfile |
| 19 | +import unittest |
| 20 | + |
| 21 | +import safetensors.torch |
| 22 | +import torch |
| 23 | + |
| 24 | +from ai_edge_torch.generative.examples.tiny_llama import tiny_llama |
| 25 | +from ai_edge_torch.generative.utilities import loader as loading_utils |
| 26 | + |
| 27 | + |
| 28 | +class TestLoader(unittest.TestCase): |
| 29 | + """Unit tests that check weight loader.""" |
| 30 | + |
| 31 | + def test_load_safetensors(self): |
| 32 | + with tempfile.TemporaryDirectory() as temp_dir: |
| 33 | + file_path = os.path.join(temp_dir, "test.safetensors") |
| 34 | + test_data = {"weight": torch.randn(20, 10), "bias": torch.randn(20)} |
| 35 | + safetensors.torch.save_file(test_data, file_path) |
| 36 | + |
| 37 | + loaded_tensors = loading_utils.load_safetensors(file_path) |
| 38 | + self.assertIn("weight", loaded_tensors) |
| 39 | + self.assertIn("bias", loaded_tensors) |
| 40 | + |
| 41 | + def test_load_statedict(self): |
| 42 | + with tempfile.TemporaryDirectory() as temp_dir: |
| 43 | + file_path = os.path.join(temp_dir, "test.pt") |
| 44 | + model = torch.nn.Linear(10, 5) |
| 45 | + state_dict = model.state_dict() |
| 46 | + torch.save(state_dict, file_path) |
| 47 | + |
| 48 | + loaded_tensors = loading_utils.load_pytorch_statedict(file_path) |
| 49 | + self.assertIn("weight", loaded_tensors) |
| 50 | + self.assertIn("bias", loaded_tensors) |
| 51 | + |
| 52 | + def test_model_loader(self): |
| 53 | + with tempfile.TemporaryDirectory() as temp_dir: |
| 54 | + file_path = os.path.join(temp_dir, "test.safetensors") |
| 55 | + test_weights = { |
| 56 | + "lm_head.weight": torch.randn((32000, 2048)), |
| 57 | + "model.embed_tokens.weight": torch.randn((32000, 2048)), |
| 58 | + "model.layers.0.input_layernorm.weight": torch.randn((2048,)), |
| 59 | + "model.layers.0.mlp.down_proj.weight": torch.randn((2048, 5632)), |
| 60 | + "model.layers.0.mlp.gate_proj.weight": torch.randn((5632, 2048)), |
| 61 | + "model.layers.0.mlp.up_proj.weight": torch.randn((5632, 2048)), |
| 62 | + "model.layers.0.post_attention_layernorm.weight": torch.randn((2048,)), |
| 63 | + "model.layers.0.self_attn.k_proj.weight": torch.randn((256, 2048)), |
| 64 | + "model.layers.0.self_attn.o_proj.weight": torch.randn((2048, 2048)), |
| 65 | + "model.layers.0.self_attn.q_proj.weight": torch.randn((2048, 2048)), |
| 66 | + "model.layers.0.self_attn.v_proj.weight": torch.randn((256, 2048)), |
| 67 | + "model.norm.weight": torch.randn((2048,)), |
| 68 | + } |
| 69 | + safetensors.torch.save_file(test_weights, file_path) |
| 70 | + cfg = tiny_llama.get_model_config() |
| 71 | + cfg.num_layers = 1 |
| 72 | + model = tiny_llama.TinyLLamma(cfg) |
| 73 | + |
| 74 | + loader = loading_utils.ModelLoader(file_path, tiny_llama.TENSOR_NAMES) |
| 75 | + # if returns successfully, it means all the tensors were initiallized. |
| 76 | + loader.load(model, strict=True) |
| 77 | + |
| 78 | + |
| 79 | +if __name__ == "__main__": |
| 80 | + unittest.main() |
0 commit comments