-
Notifications
You must be signed in to change notification settings - Fork 18k
/
Copy pathtime.go
1943 lines (1766 loc) · 61.4 KB
/
time.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package time provides functionality for measuring and displaying time.
//
// The calendrical calculations always assume a Gregorian calendar, with
// no leap seconds.
//
// # Monotonic Clocks
//
// Operating systems provide both a “wall clock,” which is subject to
// changes for clock synchronization, and a “monotonic clock,” which is
// not. The general rule is that the wall clock is for telling time and
// the monotonic clock is for measuring time. Rather than split the API,
// in this package the Time returned by [time.Now] contains both a wall
// clock reading and a monotonic clock reading; later time-telling
// operations use the wall clock reading, but later time-measuring
// operations, specifically comparisons and subtractions, use the
// monotonic clock reading.
//
// For example, this code always computes a positive elapsed time of
// approximately 20 milliseconds, even if the wall clock is changed during
// the operation being timed:
//
// start := time.Now()
// ... operation that takes 20 milliseconds ...
// t := time.Now()
// elapsed := t.Sub(start)
//
// Other idioms, such as [time.Since](start), [time.Until](deadline), and
// time.Now().Before(deadline), are similarly robust against wall clock
// resets.
//
// The rest of this section gives the precise details of how operations
// use monotonic clocks, but understanding those details is not required
// to use this package.
//
// The Time returned by time.Now contains a monotonic clock reading.
// If Time t has a monotonic clock reading, t.Add adds the same duration to
// both the wall clock and monotonic clock readings to compute the result.
// Because t.AddDate(y, m, d), t.Round(d), and t.Truncate(d) are wall time
// computations, they always strip any monotonic clock reading from their results.
// Because t.In, t.Local, and t.UTC are used for their effect on the interpretation
// of the wall time, they also strip any monotonic clock reading from their results.
// The canonical way to strip a monotonic clock reading is to use t = t.Round(0).
//
// If Times t and u both contain monotonic clock readings, the operations
// t.After(u), t.Before(u), t.Equal(u), t.Compare(u), and t.Sub(u) are carried out
// using the monotonic clock readings alone, ignoring the wall clock
// readings. If either t or u contains no monotonic clock reading, these
// operations fall back to using the wall clock readings.
//
// On some systems the monotonic clock will stop if the computer goes to sleep.
// On such a system, t.Sub(u) may not accurately reflect the actual
// time that passed between t and u. The same applies to other functions and
// methods that subtract times, such as [Since], [Until], [Time.Before], [Time.After],
// [Time.Add], [Time.Equal] and [Time.Compare]. In some cases, you may need to strip
// the monotonic clock to get accurate results.
//
// Because the monotonic clock reading has no meaning outside
// the current process, the serialized forms generated by t.GobEncode,
// t.MarshalBinary, t.MarshalJSON, and t.MarshalText omit the monotonic
// clock reading, and t.Format provides no format for it. Similarly, the
// constructors [time.Date], [time.Parse], [time.ParseInLocation], and [time.Unix],
// as well as the unmarshalers t.GobDecode, t.UnmarshalBinary.
// t.UnmarshalJSON, and t.UnmarshalText always create times with
// no monotonic clock reading.
//
// The monotonic clock reading exists only in [Time] values. It is not
// a part of [Duration] values or the Unix times returned by t.Unix and
// friends.
//
// Note that the Go == operator compares not just the time instant but
// also the [Location] and the monotonic clock reading. See the
// documentation for the Time type for a discussion of equality
// testing for Time values.
//
// For debugging, the result of t.String does include the monotonic
// clock reading if present. If t != u because of different monotonic clock readings,
// that difference will be visible when printing t.String() and u.String().
//
// # Timer Resolution
//
// [Timer] resolution varies depending on the Go runtime, the operating system
// and the underlying hardware.
// On Unix, the resolution is ~1ms.
// On Windows version 1803 and newer, the resolution is ~0.5ms.
// On older Windows versions, the default resolution is ~16ms, but
// a higher resolution may be requested using [golang.org/x/sys/windows.TimeBeginPeriod].
package time
import (
"errors"
"math/bits"
_ "unsafe" // for go:linkname
)
// A Time represents an instant in time with nanosecond precision.
//
// Programs using times should typically store and pass them as values,
// not pointers. That is, time variables and struct fields should be of
// type [time.Time], not *time.Time.
//
// A Time value can be used by multiple goroutines simultaneously except
// that the methods [Time.GobDecode], [Time.UnmarshalBinary], [Time.UnmarshalJSON] and
// [Time.UnmarshalText] are not concurrency-safe.
//
// Time instants can be compared using the [Time.Before], [Time.After], and [Time.Equal] methods.
// The [Time.Sub] method subtracts two instants, producing a [Duration].
// The [Time.Add] method adds a Time and a Duration, producing a Time.
//
// The zero value of type Time is January 1, year 1, 00:00:00.000000000 UTC.
// As this time is unlikely to come up in practice, the [Time.IsZero] method gives
// a simple way of detecting a time that has not been initialized explicitly.
//
// Each time has an associated [Location]. The methods [Time.Local], [Time.UTC], and Time.In return a
// Time with a specific Location. Changing the Location of a Time value with
// these methods does not change the actual instant it represents, only the time
// zone in which to interpret it.
//
// Representations of a Time value saved by the [Time.GobEncode], [Time.MarshalBinary], [Time.AppendBinary],
// [Time.MarshalJSON], [Time.MarshalText] and [Time.AppendText] methods store the [Time.Location]'s offset,
// but not the location name. They therefore lose information about Daylight Saving Time.
//
// In addition to the required “wall clock” reading, a Time may contain an optional
// reading of the current process's monotonic clock, to provide additional precision
// for comparison or subtraction.
// See the “Monotonic Clocks” section in the package documentation for details.
//
// Note that the Go == operator compares not just the time instant but also the
// Location and the monotonic clock reading. Therefore, Time values should not
// be used as map or database keys without first guaranteeing that the
// identical Location has been set for all values, which can be achieved
// through use of the UTC or Local method, and that the monotonic clock reading
// has been stripped by setting t = t.Round(0). In general, prefer t.Equal(u)
// to t == u, since t.Equal uses the most accurate comparison available and
// correctly handles the case when only one of its arguments has a monotonic
// clock reading.
type Time struct {
// wall and ext encode the wall time seconds, wall time nanoseconds,
// and optional monotonic clock reading in nanoseconds.
//
// From high to low bit position, wall encodes a 1-bit flag (hasMonotonic),
// a 33-bit seconds field, and a 30-bit wall time nanoseconds field.
// The nanoseconds field is in the range [0, 999999999].
// If the hasMonotonic bit is 0, then the 33-bit field must be zero
// and the full signed 64-bit wall seconds since Jan 1 year 1 is stored in ext.
// If the hasMonotonic bit is 1, then the 33-bit field holds a 33-bit
// unsigned wall seconds since Jan 1 year 1885, and ext holds a
// signed 64-bit monotonic clock reading, nanoseconds since process start.
wall uint64
ext int64
// loc specifies the Location that should be used to
// determine the minute, hour, month, day, and year
// that correspond to this Time.
// The nil location means UTC.
// All UTC times are represented with loc==nil, never loc==&utcLoc.
loc *Location
}
const (
hasMonotonic = 1 << 63
maxWall = wallToInternal + (1<<33 - 1) // year 2157
minWall = wallToInternal // year 1885
nsecMask = 1<<30 - 1
nsecShift = 30
)
// These helpers for manipulating the wall and monotonic clock readings
// take pointer receivers, even when they don't modify the time,
// to make them cheaper to call.
// nsec returns the time's nanoseconds.
func (t *Time) nsec() int32 {
return int32(t.wall & nsecMask)
}
// sec returns the time's seconds since Jan 1 year 1.
func (t *Time) sec() int64 {
if t.wall&hasMonotonic != 0 {
return wallToInternal + int64(t.wall<<1>>(nsecShift+1))
}
return t.ext
}
// unixSec returns the time's seconds since Jan 1 1970 (Unix time).
func (t *Time) unixSec() int64 { return t.sec() + internalToUnix }
// addSec adds d seconds to the time.
func (t *Time) addSec(d int64) {
if t.wall&hasMonotonic != 0 {
sec := int64(t.wall << 1 >> (nsecShift + 1))
dsec := sec + d
if 0 <= dsec && dsec <= 1<<33-1 {
t.wall = t.wall&nsecMask | uint64(dsec)<<nsecShift | hasMonotonic
return
}
// Wall second now out of range for packed field.
// Move to ext.
t.stripMono()
}
// Check if the sum of t.ext and d overflows and handle it properly.
sum := t.ext + d
if (sum > t.ext) == (d > 0) {
t.ext = sum
} else if d > 0 {
t.ext = 1<<63 - 1
} else {
t.ext = -(1<<63 - 1)
}
}
// setLoc sets the location associated with the time.
func (t *Time) setLoc(loc *Location) {
if loc == &utcLoc {
loc = nil
}
t.stripMono()
t.loc = loc
}
// stripMono strips the monotonic clock reading in t.
func (t *Time) stripMono() {
if t.wall&hasMonotonic != 0 {
t.ext = t.sec()
t.wall &= nsecMask
}
}
// setMono sets the monotonic clock reading in t.
// If t cannot hold a monotonic clock reading,
// because its wall time is too large,
// setMono is a no-op.
func (t *Time) setMono(m int64) {
if t.wall&hasMonotonic == 0 {
sec := t.ext
if sec < minWall || maxWall < sec {
return
}
t.wall |= hasMonotonic | uint64(sec-minWall)<<nsecShift
}
t.ext = m
}
// mono returns t's monotonic clock reading.
// It returns 0 for a missing reading.
// This function is used only for testing,
// so it's OK that technically 0 is a valid
// monotonic clock reading as well.
func (t *Time) mono() int64 {
if t.wall&hasMonotonic == 0 {
return 0
}
return t.ext
}
// IsZero reports whether t represents the zero time instant,
// January 1, year 1, 00:00:00 UTC.
func (t Time) IsZero() bool {
return t.sec() == 0 && t.nsec() == 0
}
// After reports whether the time instant t is after u.
func (t Time) After(u Time) bool {
if t.wall&u.wall&hasMonotonic != 0 {
return t.ext > u.ext
}
ts := t.sec()
us := u.sec()
return ts > us || ts == us && t.nsec() > u.nsec()
}
// Before reports whether the time instant t is before u.
func (t Time) Before(u Time) bool {
if t.wall&u.wall&hasMonotonic != 0 {
return t.ext < u.ext
}
ts := t.sec()
us := u.sec()
return ts < us || ts == us && t.nsec() < u.nsec()
}
// Compare compares the time instant t with u. If t is before u, it returns -1;
// if t is after u, it returns +1; if they're the same, it returns 0.
func (t Time) Compare(u Time) int {
var tc, uc int64
if t.wall&u.wall&hasMonotonic != 0 {
tc, uc = t.ext, u.ext
} else {
tc, uc = t.sec(), u.sec()
if tc == uc {
tc, uc = int64(t.nsec()), int64(u.nsec())
}
}
switch {
case tc < uc:
return -1
case tc > uc:
return +1
}
return 0
}
// Equal reports whether t and u represent the same time instant.
// Two times can be equal even if they are in different locations.
// For example, 6:00 +0200 and 4:00 UTC are Equal.
// See the documentation on the Time type for the pitfalls of using == with
// Time values; most code should use Equal instead.
func (t Time) Equal(u Time) bool {
if t.wall&u.wall&hasMonotonic != 0 {
return t.ext == u.ext
}
return t.sec() == u.sec() && t.nsec() == u.nsec()
}
// A Month specifies a month of the year (January = 1, ...).
type Month int
const (
January Month = 1 + iota
February
March
April
May
June
July
August
September
October
November
December
)
// String returns the English name of the month ("January", "February", ...).
func (m Month) String() string {
if January <= m && m <= December {
return longMonthNames[m-1]
}
buf := make([]byte, 20)
n := fmtInt(buf, uint64(m))
return "%!Month(" + string(buf[n:]) + ")"
}
// A Weekday specifies a day of the week (Sunday = 0, ...).
type Weekday int
const (
Sunday Weekday = iota
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
)
// String returns the English name of the day ("Sunday", "Monday", ...).
func (d Weekday) String() string {
if Sunday <= d && d <= Saturday {
return longDayNames[d]
}
buf := make([]byte, 20)
n := fmtInt(buf, uint64(d))
return "%!Weekday(" + string(buf[n:]) + ")"
}
// Computations on Times
//
// The zero value for a Time is defined to be
// January 1, year 1, 00:00:00.000000000 UTC
// which (1) looks like a zero, or as close as you can get in a date
// (1-1-1 00:00:00 UTC), (2) is unlikely enough to arise in practice to
// be a suitable "not set" sentinel, unlike Jan 1 1970, and (3) has a
// non-negative year even in time zones west of UTC, unlike 1-1-0
// 00:00:00 UTC, which would be 12-31-(-1) 19:00:00 in New York.
//
// The zero Time value does not force a specific epoch for the time
// representation. For example, to use the Unix epoch internally, we
// could define that to distinguish a zero value from Jan 1 1970, that
// time would be represented by sec=-1, nsec=1e9. However, it does
// suggest a representation, namely using 1-1-1 00:00:00 UTC as the
// epoch, and that's what we do.
//
// The Add and Sub computations are oblivious to the choice of epoch.
//
// The presentation computations - year, month, minute, and so on - all
// rely heavily on division and modulus by positive constants. For
// calendrical calculations we want these divisions to round down, even
// for negative values, so that the remainder is always positive, but
// Go's division (like most hardware division instructions) rounds to
// zero. We can still do those computations and then adjust the result
// for a negative numerator, but it's annoying to write the adjustment
// over and over. Instead, we can change to a different epoch so long
// ago that all the times we care about will be positive, and then round
// to zero and round down coincide. These presentation routines already
// have to add the zone offset, so adding the translation to the
// alternate epoch is cheap. For example, having a non-negative time t
// means that we can write
//
// sec = t % 60
//
// instead of
//
// sec = t % 60
// if sec < 0 {
// sec += 60
// }
//
// everywhere.
//
// The calendar runs on an exact 400 year cycle: a 400-year calendar
// printed for 1970-2369 will apply as well to 2370-2769. Even the days
// of the week match up. It simplifies date computations to choose the
// cycle boundaries so that the exceptional years are always delayed as
// long as possible: March 1, year 0 is such a day:
// the first leap day (Feb 29) is four years minus one day away,
// the first multiple-of-4 year without a Feb 29 is 100 years minus one day away,
// and the first multiple-of-100 year with a Feb 29 is 400 years minus one day away.
// March 1 year Y for any Y = 0 mod 400 is also such a day.
//
// Finally, it's convenient if the delta between the Unix epoch and
// long-ago epoch is representable by an int64 constant.
//
// These three considerations—choose an epoch as early as possible, that
// starts on March 1 of a year equal to 0 mod 400, and that is no more than
// 2⁶³ seconds earlier than 1970—bring us to the year -292277022400.
// We refer to this moment as the absolute zero instant, and to times
// measured as a uint64 seconds since this year as absolute times.
//
// Times measured as an int64 seconds since the year 1—the representation
// used for Time's sec field—are called internal times.
//
// Times measured as an int64 seconds since the year 1970 are called Unix
// times.
//
// It is tempting to just use the year 1 as the absolute epoch, defining
// that the routines are only valid for years >= 1. However, the
// routines would then be invalid when displaying the epoch in time zones
// west of UTC, since it is year 0. It doesn't seem tenable to say that
// printing the zero time correctly isn't supported in half the time
// zones. By comparison, it's reasonable to mishandle some times in
// the year -292277022400.
//
// All this is opaque to clients of the API and can be changed if a
// better implementation presents itself.
//
// The date calculations are implemented using the following clever math from
// Cassio Neri and Lorenz Schneider, “Euclidean affine functions and their
// application to calendar algorithms,” SP&E 2023. https://doi.org/10.1002/spe.3172
//
// Define a “calendrical division” (f, f°, f*) to be a triple of functions converting
// one time unit into a whole number of larger units and the remainder and back.
// For example, in a calendar with no leap years, (d/365, d%365, y*365) is the
// calendrical division for days into years:
//
// (f) year := days/365
// (f°) yday := days%365
// (f*) days := year*365 (+ yday)
//
// Note that f* is usually the “easy” function to write: it's the
// calendrical multiplication that inverts the more complex division.
//
// Neri and Schneider prove that when f* takes the form
//
// f*(n) = (a n + b) / c
//
// using integer division rounding down with a ≥ c > 0,
// which they call a Euclidean affine function or EAF, then:
//
// f(n) = (c n + c - b - 1) / a
// f°(n) = (c n + c - b - 1) % a / c
//
// This gives a fairly direct calculation for any calendrical division for which
// we can write the calendrical multiplication in EAF form.
// Because the epoch has been shifted to March 1, all the calendrical
// multiplications turn out to be possible to write in EAF form.
// When a date is broken into [century, cyear, amonth, mday],
// with century, cyear, and mday 0-based,
// and amonth 3-based (March = 3, ..., January = 13, February = 14),
// the calendrical multiplications written in EAF form are:
//
// yday = (153 (amonth-3) + 2) / 5 = (153 amonth - 457) / 5
// cday = 365 cyear + cyear/4 = 1461 cyear / 4
// centurydays = 36524 century + century/4 = 146097 century / 4
// days = centurydays + cday + yday + mday.
//
// We can only handle one periodic cycle per equation, so the year
// calculation must be split into [century, cyear], handling both the
// 100-year cycle and the 400-year cycle.
//
// The yday calculation is not obvious but derives from the fact
// that the March through January calendar repeats the 5-month
// 153-day cycle 31, 30, 31, 30, 31 (we don't care about February
// because yday only ever count the days _before_ February 1,
// since February is the last month).
//
// Using the rule for deriving f and f° from f*, these multiplications
// convert to these divisions:
//
// century := (4 days + 3) / 146097
// cdays := (4 days + 3) % 146097 / 4
// cyear := (4 cdays + 3) / 1461
// ayday := (4 cdays + 3) % 1461 / 4
// amonth := (5 ayday + 461) / 153
// mday := (5 ayday + 461) % 153 / 5
//
// The a in ayday and amonth stands for absolute (March 1-based)
// to distinguish from the standard yday (January 1-based).
//
// After computing these, we can translate from the March 1 calendar
// to the standard January 1 calendar with branch-free math assuming a
// branch-free conversion from bool to int 0 or 1, denoted int(b) here:
//
// isJanFeb := int(yday >= marchThruDecember)
// month := amonth - isJanFeb*12
// year := century*100 + cyear + isJanFeb
// isLeap := int(cyear%4 == 0) & (int(cyear != 0) | int(century%4 == 0))
// day := 1 + mday
// yday := 1 + ayday + 31 + 28 + isLeap&^isJanFeb - 365*isJanFeb
//
// isLeap is the standard leap-year rule, but the split year form
// makes the divisions all reduce to binary masking.
// Note that day and yday are 1-based, in contrast to mday and ayday.
// To keep the various units separate, we define integer types
// for each. These are never stored in interfaces nor allocated,
// so their type information does not appear in Go binaries.
const (
secondsPerMinute = 60
secondsPerHour = 60 * secondsPerMinute
secondsPerDay = 24 * secondsPerHour
secondsPerWeek = 7 * secondsPerDay
daysPer400Years = 365*400 + 97
// Days from March 1 through end of year
marchThruDecember = 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31
// absoluteYears is the number of years we subtract from internal time to get absolute time.
// This value must be 0 mod 400, and it defines the “absolute zero instant”
// mentioned in the “Computations on Times” comment above: March 1, -absoluteYears.
// Dates before the absolute epoch will not compute correctly,
// but otherwise the value can be changed as needed.
absoluteYears = 292277022400
// The year of the zero Time.
// Assumed by the unixToInternal computation below.
internalYear = 1
// Offsets to convert between internal and absolute or Unix times.
absoluteToInternal int64 = -(absoluteYears*365.2425 + marchThruDecember) * secondsPerDay
internalToAbsolute = -absoluteToInternal
unixToInternal int64 = (1969*365 + 1969/4 - 1969/100 + 1969/400) * secondsPerDay
internalToUnix int64 = -unixToInternal
absoluteToUnix = absoluteToInternal + internalToUnix
unixToAbsolute = unixToInternal + internalToAbsolute
wallToInternal int64 = (1884*365 + 1884/4 - 1884/100 + 1884/400) * secondsPerDay
)
// An absSeconds counts the number of seconds since the absolute zero instant.
type absSeconds uint64
// An absDays counts the number of days since the absolute zero instant.
type absDays uint64
// An absCentury counts the number of centuries since the absolute zero instant.
type absCentury uint64
// An absCyear counts the number of years since the start of a century.
type absCyear int
// An absYday counts the number of days since the start of a year.
// Note that absolute years start on March 1.
type absYday int
// An absMonth counts the number of months since the start of a year.
// absMonth=0 denotes March.
type absMonth int
// An absLeap is a single bit (0 or 1) denoting whether a given year is a leap year.
type absLeap int
// An absJanFeb is a single bit (0 or 1) denoting whether a given day falls in January or February.
// That is a special case because the absolute years start in March (unlike normal calendar years).
type absJanFeb int
// dateToAbsDays takes a standard year/month/day and returns the
// number of days from the absolute epoch to that day.
// The days argument can be out of range and in particular can be negative.
func dateToAbsDays(year int64, month Month, day int) absDays {
// See “Computations on Times” comment above.
amonth := uint32(month)
janFeb := uint32(0)
if amonth < 3 {
janFeb = 1
}
amonth += 12 * janFeb
y := uint64(year) - uint64(janFeb) + absoluteYears
// For amonth is in the range [3,14], we want:
//
// ayday := (153*amonth - 457) / 5
//
// (See the “Computations on Times” comment above
// as well as Neri and Schneider, section 7.)
//
// That is equivalent to:
//
// ayday := (979*amonth - 2919) >> 5
//
// and the latter form uses a couple fewer instructions,
// so use it, saving a few cycles.
// See Neri and Schneider, section 8.3
// for more about this optimization.
//
// (Note that there is no saved division, because the compiler
// implements / 5 without division in all cases.)
ayday := (979*amonth - 2919) >> 5
century := y / 100
cyear := uint32(y % 100)
cday := 1461 * cyear / 4
centurydays := 146097 * century / 4
return absDays(centurydays + uint64(int64(cday+ayday)+int64(day)-1))
}
// days converts absolute seconds to absolute days.
func (abs absSeconds) days() absDays {
return absDays(abs / secondsPerDay)
}
// split splits days into century, cyear, ayday.
func (days absDays) split() (century absCentury, cyear absCyear, ayday absYday) {
// See “Computations on Times” comment above.
d := 4*uint64(days) + 3
century = absCentury(d / 146097)
// This should be
// cday := uint32(d % 146097) / 4
// cd := 4*cday + 3
// which is to say
// cday := uint32(d % 146097) >> 2
// cd := cday<<2 + 3
// but of course (x>>2<<2)+3 == x|3,
// so do that instead.
cd := uint32(d%146097) | 3
// For cdays in the range [0,146097] (100 years), we want:
//
// cyear := (4 cdays + 3) / 1461
// yday := (4 cdays + 3) % 1461 / 4
//
// (See the “Computations on Times” comment above
// as well as Neri and Schneider, section 7.)
//
// That is equivalent to:
//
// cyear := (2939745 cdays) >> 32
// yday := (2939745 cdays) & 0xFFFFFFFF / 2939745 / 4
//
// so do that instead, saving a few cycles.
// See Neri and Schneider, section 8.3
// for more about this optimization.
hi, lo := bits.Mul32(2939745, uint32(cd))
cyear = absCyear(hi)
ayday = absYday(lo / 2939745 / 4)
return
}
// split splits ayday into absolute month and standard (1-based) day-in-month.
func (ayday absYday) split() (m absMonth, mday int) {
// See “Computations on Times” comment above.
//
// For yday in the range [0,366],
//
// amonth := (5 yday + 461) / 153
// mday := (5 yday + 461) % 153 / 5
//
// is equivalent to:
//
// amonth = (2141 yday + 197913) >> 16
// mday = (2141 yday + 197913) & 0xFFFF / 2141
//
// so do that instead, saving a few cycles.
// See Neri and Schneider, section 8.3.
d := 2141*uint32(ayday) + 197913
return absMonth(d >> 16), 1 + int((d&0xFFFF)/2141)
}
// janFeb returns 1 if the March 1-based ayday is in January or February, 0 otherwise.
func (ayday absYday) janFeb() absJanFeb {
// See “Computations on Times” comment above.
jf := absJanFeb(0)
if ayday >= marchThruDecember {
jf = 1
}
return jf
}
// month returns the standard Month for (m, janFeb)
func (m absMonth) month(janFeb absJanFeb) Month {
// See “Computations on Times” comment above.
return Month(m) - Month(janFeb)*12
}
// leap returns 1 if (century, cyear) is a leap year, 0 otherwise.
func (century absCentury) leap(cyear absCyear) absLeap {
// See “Computations on Times” comment above.
y4ok := 0
if cyear%4 == 0 {
y4ok = 1
}
y100ok := 0
if cyear != 0 {
y100ok = 1
}
y400ok := 0
if century%4 == 0 {
y400ok = 1
}
return absLeap(y4ok & (y100ok | y400ok))
}
// year returns the standard year for (century, cyear, janFeb).
func (century absCentury) year(cyear absCyear, janFeb absJanFeb) int {
// See “Computations on Times” comment above.
return int(uint64(century)*100-absoluteYears) + int(cyear) + int(janFeb)
}
// yday returns the standard 1-based yday for (ayday, janFeb, leap).
func (ayday absYday) yday(janFeb absJanFeb, leap absLeap) int {
// See “Computations on Times” comment above.
return int(ayday) + (1 + 31 + 28) + int(leap)&^int(janFeb) - 365*int(janFeb)
}
// date converts days into standard year, month, day.
func (days absDays) date() (year int, month Month, day int) {
century, cyear, ayday := days.split()
amonth, day := ayday.split()
janFeb := ayday.janFeb()
year = century.year(cyear, janFeb)
month = amonth.month(janFeb)
return
}
// yearYday converts days into the standard year and 1-based yday.
func (days absDays) yearYday() (year, yday int) {
century, cyear, ayday := days.split()
janFeb := ayday.janFeb()
year = century.year(cyear, janFeb)
yday = ayday.yday(janFeb, century.leap(cyear))
return
}
// absSec returns the time t as an absolute seconds, adjusted by the zone offset.
// It is called when computing a presentation property like Month or Hour.
// We'd rather call it abs, but there are linknames to abs that make that problematic.
// See timeAbs below.
func (t Time) absSec() absSeconds {
l := t.loc
// Avoid function calls when possible.
if l == nil || l == &localLoc {
l = l.get()
}
sec := t.unixSec()
if l != &utcLoc {
if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
sec += int64(l.cacheZone.offset)
} else {
_, offset, _, _, _ := l.lookup(sec)
sec += int64(offset)
}
}
return absSeconds(sec + (unixToInternal + internalToAbsolute))
}
// locabs is a combination of the Zone and abs methods,
// extracting both return values from a single zone lookup.
func (t Time) locabs() (name string, offset int, abs absSeconds) {
l := t.loc
if l == nil || l == &localLoc {
l = l.get()
}
// Avoid function call if we hit the local time cache.
sec := t.unixSec()
if l != &utcLoc {
if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
name = l.cacheZone.name
offset = l.cacheZone.offset
} else {
name, offset, _, _, _ = l.lookup(sec)
}
sec += int64(offset)
} else {
name = "UTC"
}
abs = absSeconds(sec + (unixToInternal + internalToAbsolute))
return
}
// Date returns the year, month, and day in which t occurs.
func (t Time) Date() (year int, month Month, day int) {
return t.absSec().days().date()
}
// Year returns the year in which t occurs.
func (t Time) Year() int {
century, cyear, ayday := t.absSec().days().split()
janFeb := ayday.janFeb()
return century.year(cyear, janFeb)
}
// Month returns the month of the year specified by t.
func (t Time) Month() Month {
_, _, ayday := t.absSec().days().split()
amonth, _ := ayday.split()
return amonth.month(ayday.janFeb())
}
// Day returns the day of the month specified by t.
func (t Time) Day() int {
_, _, ayday := t.absSec().days().split()
_, day := ayday.split()
return day
}
// Weekday returns the day of the week specified by t.
func (t Time) Weekday() Weekday {
return t.absSec().days().weekday()
}
// weekday returns the day of the week specified by days.
func (days absDays) weekday() Weekday {
// March 1 of the absolute year, like March 1 of 2000, was a Wednesday.
return Weekday((uint64(days) + uint64(Wednesday)) % 7)
}
// ISOWeek returns the ISO 8601 year and week number in which t occurs.
// Week ranges from 1 to 53. Jan 01 to Jan 03 of year n might belong to
// week 52 or 53 of year n-1, and Dec 29 to Dec 31 might belong to week 1
// of year n+1.
func (t Time) ISOWeek() (year, week int) {
// According to the rule that the first calendar week of a calendar year is
// the week including the first Thursday of that year, and that the last one is
// the week immediately preceding the first calendar week of the next calendar year.
// See https://www.iso.org/obp/ui#iso:std:iso:8601:-1:ed-1:v1:en:term:3.1.1.23 for details.
// weeks start with Monday
// Monday Tuesday Wednesday Thursday Friday Saturday Sunday
// 1 2 3 4 5 6 7
// +3 +2 +1 0 -1 -2 -3
// the offset to Thursday
days := t.absSec().days()
thu := days + absDays(Thursday-((days-1).weekday()+1))
year, yday := thu.yearYday()
return year, (yday-1)/7 + 1
}
// Clock returns the hour, minute, and second within the day specified by t.
func (t Time) Clock() (hour, min, sec int) {
return t.absSec().clock()
}
// clock returns the hour, minute, and second within the day specified by abs.
func (abs absSeconds) clock() (hour, min, sec int) {
sec = int(abs % secondsPerDay)
hour = sec / secondsPerHour
sec -= hour * secondsPerHour
min = sec / secondsPerMinute
sec -= min * secondsPerMinute
return
}
// Hour returns the hour within the day specified by t, in the range [0, 23].
func (t Time) Hour() int {
return int(t.absSec()%secondsPerDay) / secondsPerHour
}
// Minute returns the minute offset within the hour specified by t, in the range [0, 59].
func (t Time) Minute() int {
return int(t.absSec()%secondsPerHour) / secondsPerMinute
}
// Second returns the second offset within the minute specified by t, in the range [0, 59].
func (t Time) Second() int {
return int(t.absSec() % secondsPerMinute)
}
// Nanosecond returns the nanosecond offset within the second specified by t,
// in the range [0, 999999999].
func (t Time) Nanosecond() int {
return int(t.nsec())
}
// YearDay returns the day of the year specified by t, in the range [1,365] for non-leap years,
// and [1,366] in leap years.
func (t Time) YearDay() int {
_, yday := t.absSec().days().yearYday()
return yday
}
// A Duration represents the elapsed time between two instants
// as an int64 nanosecond count. The representation limits the
// largest representable duration to approximately 290 years.
type Duration int64
const (
minDuration Duration = -1 << 63
maxDuration Duration = 1<<63 - 1
)
// Common durations. There is no definition for units of Day or larger
// to avoid confusion across daylight savings time zone transitions.
//
// To count the number of units in a [Duration], divide:
//
// second := time.Second
// fmt.Print(int64(second/time.Millisecond)) // prints 1000
//
// To convert an integer number of units to a Duration, multiply:
//
// seconds := 10
// fmt.Print(time.Duration(seconds)*time.Second) // prints 10s
const (
Nanosecond Duration = 1
Microsecond = 1000 * Nanosecond
Millisecond = 1000 * Microsecond
Second = 1000 * Millisecond
Minute = 60 * Second
Hour = 60 * Minute
)
// String returns a string representing the duration in the form "72h3m0.5s".
// Leading zero units are omitted. As a special case, durations less than one
// second format use a smaller unit (milli-, micro-, or nanoseconds) to ensure
// that the leading digit is non-zero. The zero duration formats as 0s.
func (d Duration) String() string {
// This is inlinable to take advantage of "function outlining".
// Thus, the caller can decide whether a string must be heap allocated.
var arr [32]byte
n := d.format(&arr)
return string(arr[n:])
}
// format formats the representation of d into the end of buf and
// returns the offset of the first character.
func (d Duration) format(buf *[32]byte) int {
// Largest time is 2540400h10m10.000000000s
w := len(buf)
u := uint64(d)
neg := d < 0
if neg {
u = -u
}
if u < uint64(Second) {
// Special case: if duration is smaller than a second,
// use smaller units, like 1.2ms
var prec int
w--
buf[w] = 's'
w--
switch {
case u == 0:
buf[w] = '0'
return w
case u < uint64(Microsecond):
// print nanoseconds
prec = 0
buf[w] = 'n'
case u < uint64(Millisecond):
// print microseconds
prec = 3
// U+00B5 'µ' micro sign == 0xC2 0xB5
w-- // Need room for two bytes.
copy(buf[w:], "µ")
default:
// print milliseconds
prec = 6
buf[w] = 'm'
}
w, u = fmtFrac(buf[:w], u, prec)
w = fmtInt(buf[:w], u)
} else {
w--
buf[w] = 's'
w, u = fmtFrac(buf[:w], u, 9)
// u is now integer seconds
w = fmtInt(buf[:w], u%60)
u /= 60