@@ -47,6 +47,7 @@ const char * llm_type_name(llm_type type) {
47
47
case LLM_TYPE_475M: return "475M";
48
48
case LLM_TYPE_770M: return "770M";
49
49
case LLM_TYPE_780M: return "780M";
50
+ case LLM_TYPE_0_3B: return "0.3B";
50
51
case LLM_TYPE_0_5B: return "0.5B";
51
52
case LLM_TYPE_0_6B: return "0.6B";
52
53
case LLM_TYPE_1B: return "1B";
@@ -1504,6 +1505,14 @@ void llama_model::load_hparams(llama_model_loader & ml) {
1504
1505
default: type = LLM_TYPE_UNKNOWN;
1505
1506
}
1506
1507
} break;
1508
+ case LLM_ARCH_ERNIE4_5:
1509
+ {
1510
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
1511
+ switch (hparams.n_layer) {
1512
+ case 18: type = LLM_TYPE_0_3B; break;
1513
+ default: type = LLM_TYPE_UNKNOWN;
1514
+ }
1515
+ } break;
1507
1516
default: throw std::runtime_error("unsupported model architecture");
1508
1517
}
1509
1518
@@ -4344,6 +4353,40 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
4344
4353
4345
4354
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
4346
4355
4356
+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
4357
+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
4358
+ }
4359
+ } break;
4360
+ case LLM_ARCH_ERNIE4_5:
4361
+ {
4362
+ tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
4363
+
4364
+ // output
4365
+ output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
4366
+ output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
4367
+ // if output is NULL, init from the input tok embed
4368
+ if (output == NULL) {
4369
+ output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
4370
+ }
4371
+
4372
+ for (int i = 0; i < n_layer; ++i) {
4373
+ auto & layer = layers[i];
4374
+
4375
+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
4376
+
4377
+ layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
4378
+ layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
4379
+ layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
4380
+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
4381
+
4382
+ // optional bias tensors
4383
+ layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
4384
+ layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
4385
+ layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
4386
+ layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
4387
+
4388
+ layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
4389
+ layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
4347
4390
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
4348
4391
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
4349
4392
}
@@ -14125,6 +14168,136 @@ struct llm_build_dots1 : public llm_graph_context {
14125
14168
}
14126
14169
};
14127
14170
14171
+ struct llm_build_ernie4_5 : public llm_graph_context {
14172
+ llm_build_ernie4_5(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
14173
+ const int64_t n_embd_head = hparams.n_embd_head_v;
14174
+
14175
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
14176
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
14177
+
14178
+ ggml_tensor * cur;
14179
+ ggml_tensor * inpL;
14180
+
14181
+ inpL = build_inp_embd(model.tok_embd);
14182
+
14183
+ // inp_pos - contains the positions
14184
+ ggml_tensor * inp_pos = build_inp_pos();
14185
+
14186
+ auto * inp_attn = build_attn_inp_kv_unified();
14187
+
14188
+ for (int il = 0; il < n_layer; ++il) {
14189
+ ggml_tensor * inpSA = inpL;
14190
+
14191
+ // norm
14192
+ {
14193
+ cur = build_norm(inpL,
14194
+ model.layers[il].attn_norm, NULL,
14195
+ LLM_NORM_RMS, il);
14196
+ cb(cur, "attn_norm", il);
14197
+ }
14198
+
14199
+ // self-attention
14200
+ {
14201
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
14202
+ cb(Qcur, "Qcur", il);
14203
+ if (model.layers[il].bq) {
14204
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
14205
+ cb(Qcur, "Qcur", il);
14206
+ }
14207
+
14208
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
14209
+ cb(Kcur, "Kcur", il);
14210
+ if (model.layers[il].bk) {
14211
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
14212
+ cb(Kcur, "Kcur", il);
14213
+ }
14214
+
14215
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
14216
+ cb(Vcur, "Vcur", il);
14217
+ if (model.layers[il].bv) {
14218
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
14219
+ cb(Vcur, "Vcur", il);
14220
+ }
14221
+
14222
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
14223
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
14224
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
14225
+
14226
+ Qcur = ggml_rope_ext(
14227
+ ctx0, Qcur, inp_pos, nullptr,
14228
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
14229
+ ext_factor, attn_factor, beta_fast, beta_slow
14230
+ );
14231
+
14232
+ Kcur = ggml_rope_ext(
14233
+ ctx0, Kcur, inp_pos, nullptr,
14234
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
14235
+ ext_factor, attn_factor, beta_fast, beta_slow
14236
+ );
14237
+
14238
+ cb(Qcur, "Qcur", il);
14239
+ cb(Kcur, "Kcur", il);
14240
+ cb(Vcur, "Vcur", il);
14241
+
14242
+ cur = build_attn(inp_attn, gf,
14243
+ model.layers[il].wo, NULL,
14244
+ Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
14245
+ }
14246
+
14247
+ if (il == n_layer - 1) {
14248
+ // skip computing output for unused tokens
14249
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
14250
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
14251
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
14252
+ }
14253
+
14254
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
14255
+ cb(ffn_inp, "ffn_inp", il);
14256
+
14257
+ // feed-forward network
14258
+ {
14259
+ cur = build_norm(ffn_inp,
14260
+ model.layers[il].ffn_norm, NULL,
14261
+ LLM_NORM_RMS, il);
14262
+ cb(cur, "ffn_norm", il);
14263
+
14264
+ cur = build_ffn(cur,
14265
+ model.layers[il].ffn_up, NULL, NULL,
14266
+ model.layers[il].ffn_gate, NULL, NULL,
14267
+ model.layers[il].ffn_down, NULL, NULL,
14268
+ NULL,
14269
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
14270
+ cb(cur, "ffn_out", il);
14271
+ }
14272
+
14273
+ cur = ggml_add(ctx0, cur, ffn_inp);
14274
+
14275
+ cur = build_cvec(cur, il);
14276
+ cb(cur, "l_out", il);
14277
+
14278
+ // input for next layer
14279
+ inpL = cur;
14280
+ }
14281
+
14282
+ cur = inpL;
14283
+
14284
+ cur = build_norm(cur,
14285
+ model.output_norm, NULL,
14286
+ LLM_NORM_RMS, -1);
14287
+
14288
+ cb(cur, "result_norm", -1);
14289
+ res->t_embd = cur;
14290
+
14291
+ // lm_head
14292
+ cur = build_lora_mm(model.output, cur);
14293
+
14294
+ cb(cur, "result_output", -1);
14295
+ res->t_logits = cur;
14296
+
14297
+ ggml_build_forward_expand(gf, cur);
14298
+ }
14299
+ };
14300
+
14128
14301
struct llm_build_arcee : public llm_graph_context {
14129
14302
llm_build_arcee(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
14130
14303
const int64_t n_embd_head = hparams.n_embd_head_v;
@@ -14635,6 +14808,10 @@ llm_graph_result_ptr llama_model::build_graph(
14635
14808
{
14636
14809
llm = std::make_unique<llm_build_arcee>(*this, params, gf);
14637
14810
} break;
14811
+ case LLM_ARCH_ERNIE4_5:
14812
+ {
14813
+ llm = std::make_unique<llm_build_ernie4_5>(*this, params, gf);
14814
+ } break;
14638
14815
default:
14639
14816
GGML_ABORT("fatal error");
14640
14817
}
@@ -14786,6 +14963,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
14786
14963
case LLM_ARCH_BAILINGMOE:
14787
14964
case LLM_ARCH_NEO_BERT:
14788
14965
case LLM_ARCH_ARCEE:
14966
+ case LLM_ARCH_ERNIE4_5:
14789
14967
return LLAMA_ROPE_TYPE_NORM;
14790
14968
14791
14969
// the pairs of head values are offset by n_rot/2
0 commit comments