You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<metacontent="Deep R Programming is comprehensive course on one of the most popular languages in data science (statistical computing, graphics, machine learning, data wrangling and analytics). It introduces the base language in-depth and is aimed at ambitious students, practitioners, and researchers who would like to become independent users of this powerful environment. This textbook is a non-profit project. Its online and PDF versions are freely available at https://deepr.gagolewski.com/." name="citation_abstract" />
<em>Although available online, it is a whole course;
288
289
it should be read from the beginning to the end.
289
290
Refer to the <aclass="reference internal" href="000-preface.html#chap-preface"><spanclass="std std-ref">Preface</span></a> for general introductory remarks.</em>
290
-
<em>Also, check out my other book, <aclass="reference external" href="https://datawranglingpy.gagolewski.com/"><em>Minimalist Data Wrangling with Python</em></a><spanid="id1">[<aclass="reference internal" href="999-bibliography.html#id52" title="Gagolewski, M. (2022). Minimalist Data Wrangling with Python. Zenodo, Melbourne. ISBN 978-0-6455719-1-2. URL: https://datawranglingpy.gagolewski.com/, DOI: 10.5281/zenodo.6451068.">20</a>]</span>.</em></p>
291
+
<em>Also, check out my other book, <aclass="reference external" href="https://datawranglingpy.gagolewski.com/"><em>Minimalist Data Wrangling with Python</em></a><spanid="id1">[<aclass="reference internal" href="999-bibliography.html#id3" title="Gagolewski, M. (2022). Minimalist Data Wrangling with Python. Zenodo, Melbourne. ISBN 978-0-6455719-1-2. URL: https://datawranglingpy.gagolewski.com/, DOI: 10.5281/zenodo.6451068.">20</a>]</span>.</em></p>
291
292
</div></blockquote>
292
293
<sectionid="hello-world">
293
294
<h2><spanclass="section-number">1.1. </span>Hello, World!<aclass="headerlink" href="#hello-world" title="Permalink to this heading"></a></h2>
(text, tables, plots, auxiliary files) synchronised with their generating
422
423
code and data.</p>
423
424
<p><strongclass="command">utils::Sweave</strong> (the <strongclass="command">Sweave</strong> function
424
-
from the <strongclass="program">utils</strong> package) and <strongclass="program">knitr</strong><spanid="id6">[<aclass="reference internal" href="999-bibliography.html#id41" title="Xie, Y. (2015). Dynamic Documents with R and knitr. Chapman and Hall/CRC.">44</a>]</span>
425
+
from the <strongclass="program">utils</strong> package) and <strongclass="program">knitr</strong><spanid="id6">[<aclass="reference internal" href="999-bibliography.html#id43" title="Xie, Y. (2015). Dynamic Documents with R and knitr. Chapman and Hall/CRC.">44</a>]</span>
There, editable and executable code chunks and results they generate
541
542
can be kept together in a single <codeclass="file docutils literal notranslate"><spanclass="pre">.ipynb</span></code> (JSON) file;
542
543
see <aclass="reference internal" href="#fig-jupyternotebook"><spanclass="std std-numref">Figure 1.2</span></a> for an illustration
543
-
and Chapter 1 of <spanid="id7">[<aclass="reference internal" href="999-bibliography.html#id52" title="Gagolewski, M. (2022). Minimalist Data Wrangling with Python. Zenodo, Melbourne. ISBN 978-0-6455719-1-2. URL: https://datawranglingpy.gagolewski.com/, DOI: 10.5281/zenodo.6451068.">20</a>]</span> for a quick introduction
544
+
and Chapter 1 of <spanid="id7">[<aclass="reference internal" href="999-bibliography.html#id3" title="Gagolewski, M. (2022). Minimalist Data Wrangling with Python. Zenodo, Melbourne. ISBN 978-0-6455719-1-2. URL: https://datawranglingpy.gagolewski.com/, DOI: 10.5281/zenodo.6451068.">20</a>]</span> for a quick introduction
544
545
(from the Python language kernel perspective).</p>
545
546
<p>This environment is quite convenient for live coding
546
547
(e.g., for teachers) or performing exploratory data analyses.
@@ -616,7 +617,7 @@ <h2><span class="section-number">1.3. </span>Atomic Vectors at a Glance<a class=
616
617
<p>Moreover, the fact that vectors are the core part of the R language
617
618
makes their use very natural – as opposed
618
619
to the languages that require special add-ons for vector processing,
619
-
e.g., <strongclass="program">numpy</strong> for Python <spanid="id8">[<aclass="reference internal" href="999-bibliography.html#id23" title="Harris, C.R., et al. (2020). Array programming with NumPy. Nature, 585(7825):357–362. DOI: 10.1038/s41586-020-2649-2.">29</a>]</span>.
620
+
e.g., <strongclass="program">numpy</strong> for Python <spanid="id8">[<aclass="reference internal" href="999-bibliography.html#id25" title="Harris, C.R., et al. (2020). Array programming with NumPy. Nature, 585(7825):357–362. DOI: 10.1038/s41586-020-2649-2.">29</a>]</span>.
620
621
By learning different ways to process them <em>as a whole</em>,
621
622
instead of one element at a time,
622
623
we will assure that our ideas can quickly be turned into working code
Copyright © 2022 by <ahref="https://www.gagolewski.com">Marek Gagolewski</a>. Some rights reserved. Licensed under <ahref='https://creativecommons.org/licenses/by-nc-nd/4.0/'>CC BY-NC-ND 4.0</a>.
745
+
Copyright © 2022–2023 by <ahref="https://www.gagolewski.com">Marek Gagolewski</a>. Some rights reserved. Licensed under <ahref='https://creativecommons.org/licenses/by-nc-nd/4.0/'>CC BY-NC-ND 4.0</a>.
745
746
746
747
Built with <ahref="https://sphinx-doc.org/">Sphinx</a>
747
748
and a customised <ahref="https://github.com/rtfd/sphinx_rtd_theme">rtd</a>
0 commit comments