|
| 1 | +import triton # type: ignore[import] |
| 2 | +import triton.language as tl # type: ignore[import] |
| 3 | + |
| 4 | + |
| 5 | +def matmul_get_configs(): |
| 6 | + return [ |
| 7 | + triton.Config( |
| 8 | + { |
| 9 | + "BLOCK_SIZE_M": BM, |
| 10 | + "BLOCK_SIZE_N": BN, |
| 11 | + "BLOCK_SIZE_K": BK, |
| 12 | + "GROUP_SIZE_M": 8, |
| 13 | + }, |
| 14 | + num_stages=s, |
| 15 | + num_warps=w, |
| 16 | + ) |
| 17 | + for BM in [128] |
| 18 | + for BN in [128] |
| 19 | + for BK in [64] |
| 20 | + for s in ([3]) |
| 21 | + for w in [4] |
| 22 | + ] |
| 23 | + |
| 24 | + |
| 25 | +def _matmul_launch_metadata(grid, kernel, args): |
| 26 | + ret = {} |
| 27 | + M, N, K = args["M"], args["N"], args["K"] |
| 28 | + ret["name"] = f"{kernel.name} [M={M}, N={N}, K={K}]" |
| 29 | + if "c_ptr" in args: |
| 30 | + bytes_per_elem = args["c_ptr"].element_size() |
| 31 | + else: |
| 32 | + bytes_per_elem = 1 if args["FP8_OUTPUT"] else 2 |
| 33 | + ret[f"flops{bytes_per_elem * 8}"] = 2.0 * M * N * K |
| 34 | + ret["bytes"] = bytes_per_elem * (M * K + N * K + M * N) |
| 35 | + return ret |
| 36 | + |
| 37 | + |
| 38 | +@triton.jit |
| 39 | +def _compute_pid(tile_id, num_pid_in_group, num_pid_m, GROUP_SIZE_M, NUM_SMS): |
| 40 | + group_id = tile_id // num_pid_in_group |
| 41 | + first_pid_m = group_id * GROUP_SIZE_M |
| 42 | + group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) |
| 43 | + pid_m = first_pid_m + (tile_id % group_size_m) |
| 44 | + pid_n = (tile_id % num_pid_in_group) // group_size_m |
| 45 | + return pid_m, pid_n |
| 46 | + |
| 47 | + |
| 48 | +@triton.autotune( |
| 49 | + configs=matmul_get_configs(), |
| 50 | + key=["M", "N", "K"], |
| 51 | +) |
| 52 | +@triton.jit(launch_metadata=_matmul_launch_metadata) |
| 53 | +def gemm_kernel_persistent( |
| 54 | + a_ptr, |
| 55 | + b_ptr, |
| 56 | + c_ptr, |
| 57 | + M, |
| 58 | + N, |
| 59 | + K, |
| 60 | + stride_am, |
| 61 | + stride_ak, |
| 62 | + stride_bk, |
| 63 | + stride_bn, |
| 64 | + stride_cm, |
| 65 | + stride_cn, |
| 66 | + alpha, |
| 67 | + beta, |
| 68 | + BLOCK_SIZE_M: tl.constexpr, |
| 69 | + BLOCK_SIZE_N: tl.constexpr, |
| 70 | + BLOCK_SIZE_K: tl.constexpr, |
| 71 | + GROUP_SIZE_M: tl.constexpr, |
| 72 | + NUM_SMS: tl.constexpr, |
| 73 | +): |
| 74 | + start_pid = tl.program_id(axis=0) |
| 75 | + num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) |
| 76 | + num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) |
| 77 | + k_tiles = tl.cdiv(K, BLOCK_SIZE_K) |
| 78 | + num_tiles = num_pid_m * num_pid_n |
| 79 | + |
| 80 | + # NOTE: There is currently a bug in blackwell pipelining that means it can't handle a value being |
| 81 | + # used in both the prologue and epilogue, so we duplicate the counters as a work-around. |
| 82 | + tile_id_c = start_pid - NUM_SMS |
| 83 | + |
| 84 | + offs_k_for_mask = tl.arange(0, BLOCK_SIZE_K) |
| 85 | + num_pid_in_group = GROUP_SIZE_M * num_pid_n |
| 86 | + |
| 87 | + for tile_id in tl.range(start_pid, num_tiles, NUM_SMS, flatten=True): |
| 88 | + pid_m, pid_n = _compute_pid( |
| 89 | + tile_id, num_pid_in_group, num_pid_m, GROUP_SIZE_M, NUM_SMS |
| 90 | + ) |
| 91 | + start_m = pid_m * BLOCK_SIZE_M |
| 92 | + start_n = pid_n * BLOCK_SIZE_N |
| 93 | + offs_am = start_m + tl.arange(0, BLOCK_SIZE_M) |
| 94 | + offs_bn = start_n + tl.arange(0, BLOCK_SIZE_N) |
| 95 | + offs_am = tl.where(offs_am < M, offs_am, 0) |
| 96 | + offs_bn = tl.where(offs_bn < N, offs_bn, 0) |
| 97 | + offs_am = tl.max_contiguous(tl.multiple_of(offs_am, BLOCK_SIZE_M), BLOCK_SIZE_M) |
| 98 | + offs_bn = tl.max_contiguous(tl.multiple_of(offs_bn, BLOCK_SIZE_N), BLOCK_SIZE_N) |
| 99 | + |
| 100 | + accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) |
| 101 | + for ki in range(k_tiles): |
| 102 | + offs_k = ki * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K) |
| 103 | + a_ptrs = a_ptr + ( |
| 104 | + offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak |
| 105 | + ) |
| 106 | + b_ptrs = b_ptr + ( |
| 107 | + offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn |
| 108 | + ) |
| 109 | + |
| 110 | + a = tl.load( |
| 111 | + a_ptrs, mask=offs_k_for_mask[None, :] < K - ki * BLOCK_SIZE_K, other=0.0 |
| 112 | + ) |
| 113 | + b = tl.load( |
| 114 | + b_ptrs, mask=offs_k_for_mask[:, None] < K - ki * BLOCK_SIZE_K, other=0.0 |
| 115 | + ) |
| 116 | + accumulator = tl.dot(a, b, accumulator) |
| 117 | + |
| 118 | + tile_id_c += NUM_SMS |
| 119 | + pid_m, pid_n = _compute_pid( |
| 120 | + tile_id_c, num_pid_in_group, num_pid_m, GROUP_SIZE_M, NUM_SMS |
| 121 | + ) |
| 122 | + offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) |
| 123 | + offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) |
| 124 | + c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :] |
| 125 | + c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) |
| 126 | + c = accumulator.to(c_ptr.dtype.element_ty) |
| 127 | + |
| 128 | + c = tl.fma(c, alpha, beta * tl.load(c_ptrs, mask=c_mask)) |
| 129 | + tl.store(c_ptrs, c, mask=c_mask) |
| 130 | + |
| 131 | + |
| 132 | +@triton.jit(launch_metadata=_matmul_launch_metadata) |
| 133 | +def gemm_kernel_descriptor_persistent( |
| 134 | + a_ptr, |
| 135 | + b_ptr, |
| 136 | + c_ptr, # |
| 137 | + M, |
| 138 | + N, |
| 139 | + K, # |
| 140 | + alpha, |
| 141 | + beta, |
| 142 | + BLOCK_SIZE_M: tl.constexpr, # |
| 143 | + BLOCK_SIZE_N: tl.constexpr, # |
| 144 | + BLOCK_SIZE_K: tl.constexpr, # |
| 145 | + GROUP_SIZE_M: tl.constexpr, # |
| 146 | + EPILOGUE_SUBTILE: tl.constexpr, # |
| 147 | + NUM_SMS: tl.constexpr, |
| 148 | +): # |
| 149 | + dtype = c_ptr.dtype.element_ty |
| 150 | + start_pid = tl.program_id(axis=0) |
| 151 | + num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) |
| 152 | + num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) |
| 153 | + k_tiles = tl.cdiv(K, BLOCK_SIZE_K) |
| 154 | + num_tiles = num_pid_m * num_pid_n |
| 155 | + |
| 156 | + a_desc = tl.make_tensor_descriptor( |
| 157 | + a_ptr, |
| 158 | + shape=[M, K], |
| 159 | + strides=[K, 1], |
| 160 | + block_shape=[BLOCK_SIZE_M, BLOCK_SIZE_K], |
| 161 | + ) |
| 162 | + b_desc = tl.make_tensor_descriptor( |
| 163 | + b_ptr, |
| 164 | + shape=[N, K], |
| 165 | + strides=[K, 1], |
| 166 | + block_shape=[BLOCK_SIZE_N, BLOCK_SIZE_K], |
| 167 | + ) |
| 168 | + c_desc = tl.make_tensor_descriptor( |
| 169 | + c_ptr, |
| 170 | + shape=[M, N], |
| 171 | + strides=[N, 1], |
| 172 | + block_shape=[ |
| 173 | + BLOCK_SIZE_M, |
| 174 | + BLOCK_SIZE_N if not EPILOGUE_SUBTILE else BLOCK_SIZE_N // 2, |
| 175 | + ], |
| 176 | + ) |
| 177 | + |
| 178 | + # tile_id_c is used in the epilogue to break the dependency between |
| 179 | + # the prologue and the epilogue |
| 180 | + tile_id_c = start_pid - NUM_SMS |
| 181 | + num_pid_in_group = GROUP_SIZE_M * num_pid_n |
| 182 | + |
| 183 | + for tile_id in tl.range(start_pid, num_tiles, NUM_SMS, flatten=True): |
| 184 | + pid_m, pid_n = _compute_pid( |
| 185 | + tile_id, num_pid_in_group, num_pid_m, GROUP_SIZE_M, NUM_SMS |
| 186 | + ) |
| 187 | + offs_am = pid_m * BLOCK_SIZE_M |
| 188 | + offs_bn = pid_n * BLOCK_SIZE_N |
| 189 | + |
| 190 | + accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) |
| 191 | + for ki in range(k_tiles): |
| 192 | + offs_k = ki * BLOCK_SIZE_K |
| 193 | + a = a_desc.load([offs_am, offs_k]) |
| 194 | + b = b_desc.load([offs_bn, offs_k]) |
| 195 | + accumulator = tl.dot(a, b.T, accumulator) |
| 196 | + |
| 197 | + tile_id_c += NUM_SMS |
| 198 | + pid_m, pid_n = _compute_pid( |
| 199 | + tile_id_c, num_pid_in_group, num_pid_m, GROUP_SIZE_M, NUM_SMS |
| 200 | + ) |
| 201 | + offs_cm = pid_m * BLOCK_SIZE_M |
| 202 | + offs_cn = pid_n * BLOCK_SIZE_N |
| 203 | + |
| 204 | + if EPILOGUE_SUBTILE: |
| 205 | + acc = tl.reshape(accumulator, (BLOCK_SIZE_M, 2, BLOCK_SIZE_N // 2)) |
| 206 | + acc = tl.permute(acc, (0, 2, 1)) |
| 207 | + acc0, acc1 = tl.split(acc) |
| 208 | + acc0 = tl.fma(acc0, alpha, beta * c_desc.load([offs_cm, offs_cn])) |
| 209 | + acc1 = tl.fma( |
| 210 | + acc1, alpha, beta * c_desc.load([offs_cm, offs_cn + BLOCK_SIZE_N // 2]) |
| 211 | + ) |
| 212 | + c0 = acc0.to(dtype) |
| 213 | + c_desc.store([offs_cm, offs_cn], c0) |
| 214 | + c1 = acc1.to(dtype) |
| 215 | + c_desc.store([offs_cm, offs_cn + BLOCK_SIZE_N // 2], c1) |
| 216 | + else: |
| 217 | + accumulator = tl.fma( |
| 218 | + accumulator, alpha, beta * c_desc.load([offs_cm, offs_cn]) |
| 219 | + ) |
| 220 | + c = accumulator.to(dtype) |
| 221 | + c_desc.store([offs_cm, offs_cn], c) |
| 222 | + |
| 223 | + |
| 224 | +# only for testing |
| 225 | +@triton.autotune( |
| 226 | + configs=matmul_get_configs(), |
| 227 | + key=["M", "N", "K"], |
| 228 | +) |
| 229 | +@triton.jit(launch_metadata=_matmul_launch_metadata) |
| 230 | +def gemm_kernel( |
| 231 | + a_ptr, |
| 232 | + b_ptr, |
| 233 | + c_ptr, # |
| 234 | + M, |
| 235 | + N, |
| 236 | + K, # |
| 237 | + stride_am, |
| 238 | + stride_ak, # |
| 239 | + stride_bk, |
| 240 | + stride_bn, # |
| 241 | + stride_cm, |
| 242 | + stride_cn, # |
| 243 | + alpha, |
| 244 | + beta, |
| 245 | + BLOCK_SIZE_M: tl.constexpr, # |
| 246 | + BLOCK_SIZE_N: tl.constexpr, # |
| 247 | + BLOCK_SIZE_K: tl.constexpr, # |
| 248 | + GROUP_SIZE_M: tl.constexpr, # |
| 249 | +): |
| 250 | + pid = tl.program_id(axis=0) |
| 251 | + num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) |
| 252 | + num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) |
| 253 | + num_pid_in_group = GROUP_SIZE_M * num_pid_n |
| 254 | + group_id = pid // num_pid_in_group |
| 255 | + first_pid_m = group_id * GROUP_SIZE_M |
| 256 | + group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) |
| 257 | + pid_m = first_pid_m + (pid % group_size_m) |
| 258 | + pid_n = (pid % num_pid_in_group) // group_size_m |
| 259 | + |
| 260 | + start_m = pid_m * BLOCK_SIZE_M |
| 261 | + start_n = pid_n * BLOCK_SIZE_N |
| 262 | + |
| 263 | + offs_am = start_m + tl.arange(0, BLOCK_SIZE_M) |
| 264 | + offs_bn = start_n + tl.arange(0, BLOCK_SIZE_N) |
| 265 | + offs_am = tl.where(offs_am < M, offs_am, 0) |
| 266 | + offs_bn = tl.where(offs_bn < N, offs_bn, 0) |
| 267 | + |
| 268 | + offs_am = tl.max_contiguous(tl.multiple_of(offs_am, BLOCK_SIZE_M), BLOCK_SIZE_M) |
| 269 | + offs_bn = tl.max_contiguous(tl.multiple_of(offs_bn, BLOCK_SIZE_N), BLOCK_SIZE_N) |
| 270 | + offs_k = tl.arange(0, BLOCK_SIZE_K) |
| 271 | + a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) |
| 272 | + b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) |
| 273 | + |
| 274 | + accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) |
| 275 | + |
| 276 | + for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): |
| 277 | + a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0) |
| 278 | + b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0) |
| 279 | + accumulator = tl.dot(a, b, accumulator) |
| 280 | + a_ptrs += BLOCK_SIZE_K * stride_ak |
| 281 | + b_ptrs += BLOCK_SIZE_K * stride_bk |
| 282 | + |
| 283 | + c = accumulator.to(c_ptr.dtype.element_ty) |
| 284 | + |
| 285 | + offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) |
| 286 | + offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) |
| 287 | + c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :] |
| 288 | + c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) |
| 289 | + c = tl.fma(c, alpha, beta * tl.load(c_ptrs, mask=c_mask)) |
| 290 | + tl.store(c_ptrs, c, mask=c_mask) |
0 commit comments