Skip to content

Commit d767d9d

Browse files
committed
Post-lecture corrections
1 parent f583fd8 commit d767d9d

File tree

1 file changed

+2
-2
lines changed

1 file changed

+2
-2
lines changed

src/10_Numerical_differentiation.jl

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -372,7 +372,7 @@ Therefore central finite differences is of second order:
372372
```math
373373
\left| f'(x) - D^c_h f(x)\right| \leq C h^2
374374
```
375-
with constant $C = \frac16 \|f'''\|_\infty = \frac16 \max_{x\in [a, b]} |f'''(x)|$.
375+
with constant $C = \frac13 \|f'''\|_\infty = \frac13 \max_{x\in [a, b]} |f'''(x)|$.
376376
377377
"""
378378

@@ -584,7 +584,7 @@ Note that in (6) the $h$ dependence of the **first error term** (finite differen
584584
585585
For an order $p$ method the error will thus have the form
586586
```math
587-
\text{error}(h) = C_1 h^p + C_2 {\epsilon_M}{h}
587+
\text{error}(h) = C_1 h^p + C_2 \frac{\epsilon_M}{h}
588588
```
589589
with appropriate constants $C_1$ and $C_2$.
590590
By a similar argument to minimise this error wrt. $h$

0 commit comments

Comments
 (0)