Skip to content

Commit ceb39f0

Browse files
committed
Small typos
1 parent 4b35e3f commit ceb39f0

File tree

1 file changed

+14
-8
lines changed

1 file changed

+14
-8
lines changed

src/09_Numerical_integration.jl

Lines changed: 14 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -479,10 +479,11 @@ such that $N=1$ and the term $\frac{b-a}{N} = \frac{t_{i+1} - t_i}{1} = h$.
479479
We obtain:
480480
```math
481481
\begin{aligned}
482-
Q_{t_i}^{t_{i+1}}(f) &= h\, \sum_{i=0}^1 w_i f(t_i) \\
483-
&= h\, \sum_{i=0}^1 w_i \left[\sum_{k=0}^\infty \frac{1}{k!} f^{(k)}(m_i) \, (t_i-m_i)^k \right]\\
482+
Q_{t_i}^{t_{i+1}}(f) &= h\, \sum_{j=i}^{i+1} w_j f(t_j) \\
483+
&= h\, \sum_{j=i}^{i+1} w_j \left[\sum_{k=0}^\infty \frac{1}{k!} f^{(k)}(m_j) \, (t_j-m_j)^k \right]\\
484+
&= h\, \sum_{j=i}^{i+1} w_j \left[\sum_{k=0}^\infty \frac{1}{k!} f^{(k)}(m_j) \, q_k(t_j) \right]\\
484485
&= \sum_{k=0}^\infty \frac{1}{k!} f^{(k)}(m) \left[
485-
h\, \sum_{i=0}^1 w_i \, q_k(t_i)
486+
h\, \sum_{j=i}^{i+1} w_j \, q_k(t_j)
486487
\right] \\
487488
&= \sum_{k=0}^\infty \frac{1}{k!} f^{(k)}(m) Q_{t_i}^{t_{i+1}}(q_k)
488489
\end{aligned}.
@@ -493,7 +494,7 @@ contribution from the interval $[t_{i}, t_{i+1}]$, namely
493494
\tag{5}
494495
\begin{aligned}
495496
\int_{t_i}^{t_{i+1}} f(x)\,dx - Q_{t_i}^{t_{i+1}}(f)
496-
&= \sum_{k=0}^\infty \frac{1}{k!} f^{(k)}(m) \left[ \int_{t_i}^{t_{i+1}} q_k(x) - Q_{t_i}^{t_{i+1}}(q_k) \right].
497+
&= \sum_{k=0}^\infty \frac{1}{k!} f^{(k)}(m) \left[ \int_{t_i}^{t_{i+1}} q_k(x) \,dx - Q_{t_i}^{t_{i+1}}(q_k) \right].
497498
\end{aligned}
498499
```
499500
"""
@@ -523,15 +524,20 @@ One property of quadrature formulas is their **degree of exactness**:
523524

524525
# ╔═╡ bc2043be-41e0-4083-9f8b-82b3ce6a13af
525526
md"""
526-
Note that the polynomial $q_k = ( x - m_i )^{k}$
527+
Note that the polynomial
528+
```math
529+
q_k(x) = ( x - m_i )^{k} = x^k + \left(\begin{smallmatrix}k\\1\end{smallmatrix}\right)\, x^{k-1} m_i + \left(\begin{smallmatrix}k\\2\end{smallmatrix}\right)\, x^{k-2} m_i^2
530+
+ \cdots + \left(\begin{smallmatrix}k\\k-1\end{smallmatrix}\right)\, x \, m_i^{k-1}
531+
+ m_i^k
532+
```
527533
only features monomials $x^s$ with $0 \leq s \leq k$.
528534
Therefore a formula with degree of exactness $r$ will have
529-
$\int_{t_i}^{t_{i+1}} q_k(x) - Q_{t_i}^{t_{i+1}}(q_k) = 0$ for $k \leq r$.
535+
$\int_{t_i}^{t_{i+1}} q_k(x) \,dx - Q_{t_i}^{t_{i+1}}(q_k) = 0$ for $k \leq r$.
530536
In (5) the first non-zero error term is thus
531537
```math
532538
\begin{aligned}
533-
\left|\int_{t_i}^{t_{i+1}} q_{r+1}(x) - Q_{t_i}^{t_{i+1}}(q_{r+1})\right|
534-
&\stackrel{(\ast)}{=} \left|\int_{t_i}^{t_{i+1}} x^{r+1} - Q_{t_i}^{t_{i+1}}(x^{r+1})\right| \\
539+
\left|\int_{t_i}^{t_{i+1}} q_{r+1}(x) \,dx - Q_{t_i}^{t_{i+1}}(q_{r+1})\right|
540+
&\stackrel{(\ast)}{=} \left|\int_{t_i}^{t_{i+1}} x^{r+1} \,dx - Q_{t_i}^{t_{i+1}}(x^{r+1})\right| \\
535541
&\stackrel{(\S)}{\leq}
536542
\widetilde{C}_i h^{r+2}
537543
\end{aligned}

0 commit comments

Comments
 (0)