@@ -479,10 +479,11 @@ such that $N=1$ and the term $\frac{b-a}{N} = \frac{t_{i+1} - t_i}{1} = h$.
479
479
We obtain:
480
480
```math
481
481
\b egin{aligned}
482
- Q_{t_i}^{t_{i+1}}(f) &= h\, \s um_{i=0}^1 w_i f(t_i) \\
483
- &= h\, \s um_{i=0}^1 w_i \l eft[\s um_{k=0}^\i nfty \f rac{1}{k!} f^{(k)}(m_i) \, (t_i-m_i)^k \r ight]\\
482
+ Q_{t_i}^{t_{i+1}}(f) &= h\, \s um_{j=i}^{i+1} w_j f(t_j) \\
483
+ &= h\, \s um_{j=i}^{i+1} w_j \l eft[\s um_{k=0}^\i nfty \f rac{1}{k!} f^{(k)}(m_j) \, (t_j-m_j)^k \r ight]\\
484
+ &= h\, \s um_{j=i}^{i+1} w_j \l eft[\s um_{k=0}^\i nfty \f rac{1}{k!} f^{(k)}(m_j) \, q_k(t_j) \r ight]\\
484
485
&= \s um_{k=0}^\i nfty \f rac{1}{k!} f^{(k)}(m) \l eft[
485
- h\, \s um_{i=0}^1 w_i \, q_k(t_i )
486
+ h\, \s um_{j=i}^{i+1} w_j \, q_k(t_j )
486
487
\r ight] \\
487
488
&= \s um_{k=0}^\i nfty \f rac{1}{k!} f^{(k)}(m) Q_{t_i}^{t_{i+1}}(q_k)
488
489
\e nd{aligned}.
@@ -493,7 +494,7 @@ contribution from the interval $[t_{i}, t_{i+1}]$, namely
493
494
\t ag{5}
494
495
\b egin{aligned}
495
496
\i nt_{t_i}^{t_{i+1}} f(x)\, dx - Q_{t_i}^{t_{i+1}}(f)
496
- &= \s um_{k=0}^\i nfty \f rac{1}{k!} f^{(k)}(m) \l eft[ \i nt_{t_i}^{t_{i+1}} q_k(x) - Q_{t_i}^{t_{i+1}}(q_k) \r ight].
497
+ &= \s um_{k=0}^\i nfty \f rac{1}{k!} f^{(k)}(m) \l eft[ \i nt_{t_i}^{t_{i+1}} q_k(x) \, dx - Q_{t_i}^{t_{i+1}}(q_k) \r ight].
497
498
\e nd{aligned}
498
499
```
499
500
"""
@@ -523,15 +524,20 @@ One property of quadrature formulas is their **degree of exactness**:
523
524
524
525
# ╔═╡ bc2043be-41e0-4083-9f8b-82b3ce6a13af
525
526
md """
526
- Note that the polynomial $q_k = ( x - m_i )^{k}$
527
+ Note that the polynomial
528
+ ```math
529
+ q_k(x) = ( x - m_i )^{k} = x^k + \l eft(\b egin{smallmatrix}k\\ 1\e nd{smallmatrix}\r ight)\, x^{k-1} m_i + \l eft(\b egin{smallmatrix}k\\ 2\e nd{smallmatrix}\r ight)\, x^{k-2} m_i^2
530
+ + \c dots + \l eft(\b egin{smallmatrix}k\\ k-1\e nd{smallmatrix}\r ight)\, x \, m_i^{k-1}
531
+ + m_i^k
532
+ ```
527
533
only features monomials $x^s$ with $0 \l eq s \l eq k$.
528
534
Therefore a formula with degree of exactness $r$ will have
529
- $\i nt_{t_i}^{t_{i+1}} q_k(x) - Q_{t_i}^{t_{i+1}}(q_k) = 0$ for $k \l eq r$.
535
+ $\i nt_{t_i}^{t_{i+1}} q_k(x) \, dx - Q_{t_i}^{t_{i+1}}(q_k) = 0$ for $k \l eq r$.
530
536
In (5) the first non-zero error term is thus
531
537
```math
532
538
\b egin{aligned}
533
- \l eft|\i nt_{t_i}^{t_{i+1}} q_{r+1}(x) - Q_{t_i}^{t_{i+1}}(q_{r+1})\r ight|
534
- &\s tackrel{(\a st)}{=} \l eft|\i nt_{t_i}^{t_{i+1}} x^{r+1} - Q_{t_i}^{t_{i+1}}(x^{r+1})\r ight| \\
539
+ \l eft|\i nt_{t_i}^{t_{i+1}} q_{r+1}(x) \, dx - Q_{t_i}^{t_{i+1}}(q_{r+1})\r ight|
540
+ &\s tackrel{(\a st)}{=} \l eft|\i nt_{t_i}^{t_{i+1}} x^{r+1} \, dx - Q_{t_i}^{t_{i+1}}(x^{r+1})\r ight| \\
535
541
&\s tackrel{(\S )}{\l eq}
536
542
\w idetilde{C}_i h^{r+2}
537
543
\e nd{aligned}
0 commit comments