1
1
From Cat Require Export Cat.
2
2
From Cat.Universal Require Export Initial Terminal Product Coproduct.
3
- From Cat Require Export Instances .Setoids .
3
+ From Cat Require Export Instances .SETOID .
4
4
5
5
Set Implicit Arguments .
6
6
@@ -123,14 +123,14 @@ Abort.
123
123
#[export]
124
124
Instance Pros_init : Pros :=
125
125
{
126
- carrier := CoqSetoid_init ;
126
+ carrier := SETOID_init ;
127
127
leq := fun (x y : Empty_set) => match x with end
128
128
}.
129
129
Proof . all: easy. Defined .
130
130
131
131
Definition Pros_create (X : Pros) : ProsHom Pros_init X.
132
132
Proof .
133
- now exists (CoqSetoid_create X).
133
+ now exists (SETOID_create X).
134
134
Defined .
135
135
136
136
#[refine]
@@ -155,14 +155,14 @@ Defined.
155
155
#[export]
156
156
Instance Pros_term : Pros :=
157
157
{
158
- carrier := CoqSetoid_term ;
158
+ carrier := SETOID_term ;
159
159
leq := fun _ _ => True
160
160
}.
161
161
Proof . all: easy. Defined .
162
162
163
163
Definition Pros_delete (X : Pros) : ProsHom X Pros_term.
164
164
Proof .
165
- now exists (CoqSetoid_delete X).
165
+ now exists (SETOID_delete X).
166
166
Defined .
167
167
168
168
#[refine]
@@ -178,7 +178,7 @@ Proof. easy. Defined.
178
178
#[export]
179
179
Instance Pros_product (X Y : Pros) : Pros :=
180
180
{
181
- carrier := CoqSetoid_product X Y;
181
+ carrier := SETOID_product X Y;
182
182
leq := fun x y : X * Y => leq (fst x) (fst y) /\ leq (snd x) (snd y)
183
183
}.
184
184
Proof .
@@ -190,18 +190,18 @@ Defined.
190
190
191
191
Definition Pros_outl (X Y : Pros) : ProsHom (Pros_product X Y) X.
192
192
Proof .
193
- now exists (CoqSetoid_outl X Y); cbn.
193
+ now exists (SETOID_outl X Y); cbn.
194
194
Defined .
195
195
196
196
Definition Pros_outr (X Y : Pros) : ProsHom (Pros_product X Y) Y.
197
197
Proof .
198
- now exists (CoqSetoid_outr X Y); cbn.
198
+ now exists (SETOID_outr X Y); cbn.
199
199
Defined .
200
200
201
201
Definition Pros_fpair
202
202
{A B X : Pros} (f : ProsHom X A) (g : ProsHom X B) : ProsHom X (Pros_product A B).
203
203
Proof .
204
- exists (CoqSetoid_fpair f g).
204
+ exists (SETOID_fpair f g).
205
205
now pros.
206
206
Defined .
207
207
@@ -225,7 +225,7 @@ Defined.
225
225
#[export]
226
226
Instance Pros_coproduct (X Y : Pros) : Pros :=
227
227
{
228
- carrier := CoqSetoid_coproduct X Y;
228
+ carrier := SETOID_coproduct X Y;
229
229
leq := fun a b : X + Y =>
230
230
match a, b with
231
231
| inl x, inl x' => x ≤ x'
@@ -242,18 +242,18 @@ Defined.
242
242
243
243
Definition Pros_finl (X Y : Pros) : ProsHom X (Pros_coproduct X Y).
244
244
Proof .
245
- now exists (CoqSetoid_finl X Y).
245
+ now exists (SETOID_finl X Y).
246
246
Defined .
247
247
248
248
Definition Pros_finr (X Y : Pros) : ProsHom Y (Pros_coproduct X Y).
249
249
Proof .
250
- now exists (CoqSetoid_finr X Y).
250
+ now exists (SETOID_finr X Y).
251
251
Defined .
252
252
253
253
Definition Pros_copair
254
254
(A B X : Pros) (f : ProsHom A X) (g : ProsHom B X) : ProsHom (Pros_coproduct A B) X.
255
255
Proof .
256
- exists (CoqSetoid_copair f g).
256
+ exists (SETOID_copair f g).
257
257
now intros [] []; pros.
258
258
Defined .
259
259
0 commit comments