-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutil.py
75 lines (72 loc) · 2.31 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import codecs
import numpy
def read_passages(filename, is_labeled):
str_seqs = []
str_seq = []
label_seqs = []
label_seq = []
for line in codecs.open(filename, "r", "utf-8"):
lnstrp = line.strip()
if lnstrp == "":
if len(str_seq) != 0:
str_seqs.append(str_seq)
str_seq = []
label_seqs.append(label_seq)
label_seq = []
else:
if is_labeled:
clause, label = lnstrp.split("\t")
label_seq.append(label)
else:
clause = lnstrp
str_seq.append(clause)
if len(str_seq) != 0:
str_seqs.append(str_seq)
str_seq = []
label_seqs.append(label_seq)
label_seq = []
return str_seqs, label_seqs
def evaluate(y, pred):
accuracy = float(sum([c == p for c, p in zip(y, pred)]))/len(pred)
num_gold = {}
num_pred = {}
num_correct = {}
for c, p in zip(y, pred):
if c in num_gold:
num_gold[c] += 1
else:
num_gold[c] = 1
if p in num_pred:
num_pred[p] += 1
else:
num_pred[p] = 1
if c == p:
if c in num_correct:
num_correct[c] += 1
else:
num_correct[c] = 1
fscores = {}
for p in num_pred:
precision = float(num_correct[p]) / num_pred[p] if p in num_correct else 0.0
recall = float(num_correct[p]) / num_gold[p] if p in num_correct else 0.0
fscores[p] = 2 * precision * recall / (precision + recall) if precision !=0 and recall !=0 else 0.0
weighted_fscore = sum([fscores[p] * num_gold[p] if p in num_gold else 0.0 for p in fscores]) / sum(num_gold.values())
return accuracy, weighted_fscore, fscores
def make_folds(train_X, train_Y, num_folds):
num_points = train_X.shape[0]
fol_len = num_points / num_folds
rem = num_points % num_folds
X_folds = numpy.split(train_X, num_folds) if rem == 0 else numpy.split(train_X[:-rem], num_folds)
Y_folds = numpy.split(train_Y, num_folds) if rem == 0 else numpy.split(train_Y[:-rem], num_folds)
cv_folds = []
for i in range(num_folds):
train_folds_X = []
train_folds_Y = []
for j in range(num_folds):
if i != j:
train_folds_X.append(X_folds[j])
train_folds_Y.append(Y_folds[j])
train_fold_X = numpy.concatenate(train_folds_X)
train_fold_Y = numpy.concatenate(train_folds_Y)
cv_folds.append(((train_fold_X, train_fold_Y), (X_folds[i], Y_folds[i])))
return cv_folds