-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathTrainer.py
335 lines (311 loc) · 10.3 KB
/
Trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import os,sys,math,time,io,argparse,json,traceback,collections
import torch
import torch.nn as nn
import torch.optim as optim
from torch import autograd
import torch.nn.functional as F
import torch.utils.data as data
from torchvision import transforms, utils, models
from tensorboardX import SummaryWriter
from multiprocessing import cpu_count
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
from tqdm import tqdm
import shutil
# losses and generators
from losses import get_loss
from generators import get_generator, get_generator_name
from datasets import get_dataset
class cols:
GREEN = '\033[92m'; BLUE = '\033[94m'; CYAN = '\033[36m';
LIGHT_GRAY = '\033[37m'; ENDC = '\033[0m'
class Trainer(nn.Module):
def __init__(self, params):
super(Trainer, self).__init__()
# save params
self.params = params
# set device
self.device = torch.device(params['training']['device'])
# set niter to -1
self.niter = -1
# set attribute for best score
self.best_psnr = None
# create generator
self.netG = get_generator(self.params['generator'])
print(self.netG)
# move it to device
self.netG.to(self.device)
# define output filename
self.name = get_generator_name(self.params['generator'])
# define dirs
self.base_dir = os.path.join('./checkpoints', self.params['exp_name'])
self.model_dir = self.base_dir
self.logs_dir = self.base_dir
self.images_dir = self.base_dir
self.out_dir = os.path.join(self.base_dir,'regen')
# create them
if not os.path.isdir(self.base_dir): os.makedirs(self.base_dir)
if not os.path.isdir(self.model_dir): os.makedirs(self.model_dir)
if not os.path.isdir(self.logs_dir): os.makedirs(self.logs_dir)
if not os.path.isdir(self.images_dir): os.makedirs(self.images_dir)
if not os.path.isdir(self.out_dir): os.makedirs(self.out_dir)
# if not training, do not continue
if not self.training: return
# get loss
self.loss = get_loss(self.params['training']['loss'])
# create generator optimizer
self.optimG = torch.optim.Adam( self.netG.parameters(),
lr=self.params['training']['lr'],
weight_decay=self.params['training']['weight_decay'])
# init weights
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def inf_gen(self, data_loader):
while True:
for inp,gt in data_loader:
yield inp,gt
def create_dataloaders(self):
# create training dataloader
self.training_data_loader = data.DataLoader(
get_dataset(self.params['dataset'],phase='train'),
batch_size = self.params['dataset']['params']['train']['batch_size'],
shuffle = True,
num_workers = self.params['dataset']['params']['train']['num_workers'],
drop_last = True
)
# create validation dataloader
self.validation_data_loader = data.DataLoader(
get_dataset(self.params['dataset'],phase='val'),
batch_size = self.params['dataset']['params']['val']['batch_size'],
shuffle = False,
num_workers = self.params['dataset']['params']['val']['num_workers'],
drop_last = False
)
# create infinite data gen
self.train_datagen = self.inf_gen(self.training_data_loader)
def save(self,best=False):
# set basename
# basename = os.path.join(self.model_dir, self.name)
basename = os.path.join(self.model_dir, 'model')
# append _best if is best
if best: basename += '_best'
# create state
state = { 'netG' : self.netG.state_dict(),
'optimG' : self.optimG.state_dict(),
'niter' : self.niter,
'psnr' : self.best_psnr }
# check if loss has state
if callable(getattr(self.loss, "get_state", None)):
state['loss'] = self.loss.get_state()
# save model
torch.save(state, basename+'.pth')
# save json
with open(basename+'.json', 'w') as outfile:
json.dump(self.params, outfile, indent=4, sort_keys=False)
def load(self,best=False):
# define filename
# basename = os.path.join(self.model_dir, self.name)
basename = os.path.join(self.model_dir, 'model')
if best:
fn = basename + '_best.pth'
else:
fn = basename + '.pth'
# if file exists
if os.path.isfile(fn):
# load state
state = torch.load(fn)
# load weights
self.netG.load_state_dict(state['netG'])
self.optimG.load_state_dict(state['optimG'])
self.niter = state['niter']
self.best_psnr = state['psnr'] if 'psnr' in state else None
# check if loss has state
if callable(getattr(self.loss, "get_state", None)):
self.loss.set_state(state['loss'])
# warn that weights have been loaded
print('Parameters loaded from file {}'.format(fn))
def forward(self, x):
return self.netG(x)
def trainG(self):
# reset grads
self.netG.zero_grad()
self.optimG.zero_grad()
# get new data
inp,gt = self.train_datagen.__next__()
# move to device
inp = inp.to(self.device)
gt = gt.to(self.device)
# regenerate image
regen = self.netG(inp)
# calculate loss
l = self.loss(regen,gt)
# backward
l.backward()
# update weights
self.optimG.step()
# return
return l.item(), inp, gt, regen
def train(self):
# create dataloaders
self.create_dataloaders()
# load if required
self.load()
# create tensorboardX writer
writer = SummaryWriter(self.logs_dir)
# for each iteration
for self.niter in range(self.niter+1, self.params['training']['niters']):
try:
# get starting time
start_time = time.time()
# train generator
g_cost, inp, gt, regen = self.trainG()
# view losses on tensorboard
writer.add_scalar('G_cost', g_cost, self.niter)
# save images if required
if self.niter % self.params['training']['show_images_every'] == 0:
inp = torch.clamp(inp,0,1)
gt = torch.clamp(gt,0,1)
regen = torch.clamp(regen,0,1)
nrow = int(math.sqrt(inp.size(0)))
# basename = os.path.join(self.images_dir, self.name)
utils.save_image( inp, os.path.join(self.images_dir,'img_in.png'),nrow=nrow)
utils.save_image( gt, os.path.join(self.images_dir,'img_gt.png'),nrow=nrow)
utils.save_image(regen, os.path.join(self.images_dir,'img_out.png'),nrow=nrow)
# save model
if self.niter > 0 and self.niter % self.params['training']['save_model_every'] == 0:
self.save()
# validate
if self.niter > 0 and self.niter % self.params['training']['evaluate_every'] == 0:
cur_psnr = self.validate()
writer.add_scalar('psnr', cur_psnr, self.niter)
# get time
elapsed_time = time.time() - start_time
if self.niter % 20 == 0:
# define string
s = \
( \
cols.BLUE + '[{:07d}/{:07d}]' + \
cols.CYAN + ' tm: ' + cols.BLUE + '{:.4f}' + \
cols.LIGHT_GRAY + ' G_cost: ' + cols.GREEN + '{:.4f}' + cols.ENDC \
).format(self.niter, self.params['training']['niters'], elapsed_time, g_cost)
# print it
print(s)
except OSError as e:
print(e)
self.train_datagen = self.inf_gen(self.training_data_loader)
except StopIteration:
self.train_datagen = self.inf_gen(self.training_data_loader)
except KeyboardInterrupt:
print('Quitting training.')
sys.exit()
except RuntimeError as re:
print(re)
sys.exit()
except Exception as e:
print(traceback.format_exc())
self.train_datagen = self.inf_gen(self.training_data_loader)
def validate(self):
# set gen in test mode
self.netG.eval()
# set best
vals = None
# for each val batch
for inp,gt in tqdm(self.validation_data_loader):
# move to device
inp, gt = inp.to(self.device), gt.to(self.device)
# regen
with torch.no_grad():
out = self.netG(inp)
# compare
mse = torch.pow(out-gt,2).view(out.size(0),-1).mean(1)
# mse = torch.pow(out-gt,2).mean(-1).mean(-1).mean(-1)
# sobstitute where mse in 0 (to avoid inf)
# mse = torch.where(mse==0, torch.tensor([1e-10]).to(mse.device), mse)
mse = torch.max(mse,torch.tensor([1e-6]).to(mse.device))
# calculate current psnr
cur_vals = 10*torch.log10(1./mse)
# append
vals = cur_vals if vals is None else torch.cat((vals,cur_vals),0)
# compute mean val
cur_psnr_tensor = vals.mean()
cur_psnr = cur_psnr_tensor.item()
# compare current score
if self.best_psnr is None or (cur_psnr > self.best_psnr and not torch.isinf(cur_psnr_tensor)):
# update best
self.best_psnr = cur_psnr
# save mode
self.save(best=True)
# print score
print('\n### Current PSNR: {:.4f} (best: {:.4f}) ###\n'.format(cur_psnr,self.best_psnr))
# set back gen in train mode
self.netG.train()
# return score
return cur_psnr
def regen(self):
# load
self.load(best=True)
# set net in evaluation mode
self.netG.eval()
# move net in device
self.netG.to(self.device)
# create dataloader
data_loader = data.DataLoader(
get_dataset(self.params['dataset'],phase='regen'),
batch_size = self.params['dataset']['params']['regen']['batch_size'],
num_workers = self.params['dataset']['params']['regen']['num_workers'],
shuffle = False,
)
# regenerate
for inp, fn in tqdm(data_loader):
# move to device
inp = inp.to(self.device)
# regenerate image
with torch.no_grad():
regen = self.netG(inp).cpu()
# save images
for i in range(len(fn)):
cur_fn = os.path.join(self.out_dir,fn[i])
transforms.ToPILImage()(torch.clamp(regen[i],0,1)).save(cur_fn)
def update_dict(d, u):
for k, v in u.items():
if isinstance(v, collections.Mapping):
d[k] = update_dict(d.get(k, {}), v)
else:
d[k] = v
return d
if __name__ == '__main__':
# parse args
parser = argparse.ArgumentParser(description='Paired Training.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# json
parser.add_argument("-json", "--json", help="JSON containing parameters", nargs='+', required=True)
parser.add_argument("-r", "--regen", help="Regen images", action='store_true')
# parse arguments
args = parser.parse_args()
# join all dicts
params = {}
for i in range(len(args.json)):
# load current json
with open(args.json[i]) as f: cur_params = json.load(f)
# merge with other json files
if i==0:
params = cur_params.copy()
else:
params = update_dict(params, cur_params)
# define expname as json file name
exp_name = '_'.join([os.path.splitext(os.path.basename(curj))[0] for curj in args.json])
# set exp name in params
params['exp_name'] = exp_name
# create trainer
trainer = Trainer(params)
# train or regen
if args.regen:
trainer.regen()
else:
trainer.train()