Skip to content

Latest commit

 

History

History
350 lines (282 loc) · 11.3 KB

usage.md

File metadata and controls

350 lines (282 loc) · 11.3 KB

Usage

The API provides two endpoints: one for urls, one for files. This is necessary to send files directly in binary format instead of base64-encoded strings.

Common parameters

On top of the source of file (see below), both endpoints support the same parameters, which are almost the same as the Docling CLI.

  • from_format (List[str]): Input format(s) to convert from. Allowed values: docx, pptx, html, image, pdf, asciidoc, md. Defaults to all formats.
  • to_formats (List[str]): Output format(s) to convert to. Allowed values: md, json, html, text, doctags. Defaults to md.
  • pipeline (str). The choice of which pipeline to use. Allowed values are standard and vlm. Defaults to standard.
  • do_ocr (bool): If enabled, the bitmap content will be processed using OCR. Defaults to True.
  • image_export_mode: Image export mode for the document (only in case of JSON, Markdown or HTML). Allowed values: embedded, placeholder, referenced. Optional, defaults to embedded.
  • force_ocr (bool): If enabled, replace any existing text with OCR-generated text over the full content. Defaults to False.
  • ocr_engine (str): OCR engine to use. Allowed values: easyocr, tesseract_cli, tesseract, rapidocr, ocrmac. Defaults to easyocr.
  • ocr_lang (List[str]): List of languages used by the OCR engine. Note that each OCR engine has different values for the language names. Defaults to empty.
  • pdf_backend (str): PDF backend to use. Allowed values: pypdfium2, dlparse_v1, dlparse_v2. Defaults to dlparse_v2.
  • table_mode (str): Table mode to use. Allowed values: fast, accurate. Defaults to fast.
  • abort_on_error (bool): If enabled, abort on error. Defaults to false.
  • return_as_file (boo): If enabled, return the output as a file. Defaults to false.
  • do_table_structure (bool): If enabled, the table structure will be extracted. Defaults to true.
  • do_code_enrichment (bool): If enabled, perform OCR code enrichment. Defaults to false.
  • do_formula_enrichment (bool): If enabled, perform formula OCR, return LaTeX code. Defaults to false.
  • do_picture_classification (bool): If enabled, classify pictures in documents. Defaults to false.
  • do_picture_description (bool): If enabled, describe pictures in documents. Defaults to false.
  • picture_description_local (dict): Options for running a local vision-language model in the picture description. The parameters refer to a model hosted on Hugging Face. This parameter is mutually exclusive with picture_description_api.
  • picture_description_api (dict): API details for using a vision-language model in the picture description. This parameter is mutually exclusive with picture_description_local.
  • include_images (bool): If enabled, images will be extracted from the document. Defaults to false.
  • images_scale (float): Scale factor for images. Defaults to 2.0.

Convert endpoints

Source endpoint

The endpoint is /v1alpha/convert/source, listening for POST requests of JSON payloads.

On top of the above parameters, you must send the URL(s) of the document you want process with either the http_sources or file_sources fields. The first is fetching URL(s) (optionally using with extra headers), the second allows to provide documents as base64-encoded strings. No options is required, they can be partially or completely omitted.

Simple payload example:

{
  "http_sources": [{"url": "https://arxiv.org/pdf/2206.01062"}]
}
Complete payload example:
{
  "options": {
    "from_formats": ["docx", "pptx", "html", "image", "pdf", "asciidoc", "md", "xlsx"],
    "to_formats": ["md", "json", "html", "text", "doctags"],
    "image_export_mode": "placeholder",
    "do_ocr": true,
    "force_ocr": false,
    "ocr_engine": "easyocr",
    "ocr_lang": ["en"],
    "pdf_backend": "dlparse_v2",
    "table_mode": "fast",
    "abort_on_error": false,
    "return_as_file": false,
  },
  "http_sources": [{"url": "https://arxiv.org/pdf/2206.01062"}]
}
CURL example:
curl -X 'POST' \
  'http://localhost:5001/v1alpha/convert/source' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "options": {
    "from_formats": [
      "docx",
      "pptx",
      "html",
      "image",
      "pdf",
      "asciidoc",
      "md",
      "xlsx"
    ],
    "to_formats": ["md", "json", "html", "text", "doctags"],
    "image_export_mode": "placeholder",
    "do_ocr": true,
    "force_ocr": false,
    "ocr_engine": "easyocr",
    "ocr_lang": [
      "fr",
      "de",
      "es",
      "en"
    ],
    "pdf_backend": "dlparse_v2",
    "table_mode": "fast",
    "abort_on_error": false,
    "return_as_file": false,
    "do_table_structure": true,
    "include_images": true,
    "images_scale": 2
  },
  "http_sources": [{"url": "https://arxiv.org/pdf/2206.01062"}]
}'
Python example:
import httpx

async_client = httpx.AsyncClient(timeout=60.0)
url = "http://localhost:5001/v1alpha/convert/source"
payload = {
  "options": {
    "from_formats": ["docx", "pptx", "html", "image", "pdf", "asciidoc", "md", "xlsx"],
    "to_formats": ["md", "json", "html", "text", "doctags"],
    "image_export_mode": "placeholder",
    "do_ocr": True,
    "force_ocr": False,
    "ocr_engine": "easyocr",
    "ocr_lang": "en",
    "pdf_backend": "dlparse_v2",
    "table_mode": "fast",
    "abort_on_error": False,
    "return_as_file": False,
  },
  "http_sources": [{"url": "https://arxiv.org/pdf/2206.01062"}]
}

response = await async_client_client.post(url, json=payload)

data = response.json()

File as base64

The file_sources argument in the endpoint allows to send files as base64-encoded strings. When your PDF or other file type is too large, encoding it and passing it inline to curl can lead to an “Argument list too long” error on some systems. To avoid this, we write the JSON request body to a file and have curl read from that file.

CURL steps:
# 1. Base64-encode the file
B64_DATA=$(base64 -w 0 /path/to/file/pdf-to-convert.pdf)

# 2. Build the JSON with your options
cat <<EOF > /tmp/request_body.json
{
  "options": {
  },
  "file_sources": [{
    "base64_string": "${B64_DATA}",
    "filename": "pdf-to-convert.pdf"
  }]
}
EOF

# 3. POST the request to the docling service
curl -X POST "localhost:5001/v1alpha/convert/source" \
     -H "Content-Type: application/json" \
     -d @/tmp/request_body.json

File endpoint

The endpoint is: /v1alpha/convert/file, listening for POST requests of Form payloads (necessary as the files are sent as multipart/form data). You can send one or multiple files.

CURL example:
curl -X 'POST' \
  'http://127.0.0.1:5001/v1alpha/convert/file' \
  -H 'accept: application/json' \
  -H 'Content-Type: multipart/form-data' \
  -F 'ocr_engine=easyocr' \
  -F 'pdf_backend=dlparse_v2' \
  -F 'from_formats=pdf' \
  -F 'from_formats=docx' \
  -F 'force_ocr=false' \
  -F 'image_export_mode=embedded' \
  -F 'ocr_lang=en' \
  -F 'ocr_lang=pl' \
  -F 'table_mode=fast' \
  -F '[email protected];type=application/pdf' \
  -F 'abort_on_error=false' \
  -F 'to_formats=md' \
  -F 'to_formats=text' \
  -F 'return_as_file=false' \
  -F 'do_ocr=true'
Python example:
import httpx

async_client = httpx.AsyncClient(timeout=60.0)
url = "http://localhost:5001/v1alpha/convert/file"
parameters = {
"from_formats": ["docx", "pptx", "html", "image", "pdf", "asciidoc", "md", "xlsx"],
"to_formats": ["md", "json", "html", "text", "doctags"],
"image_export_mode": "placeholder",
"do_ocr": True,
"force_ocr": False,
"ocr_engine": "easyocr",
"ocr_lang": ["en"],
"pdf_backend": "dlparse_v2",
"table_mode": "fast",
"abort_on_error": False,
"return_as_file": False
}

current_dir = os.path.dirname(__file__)
file_path = os.path.join(current_dir, '2206.01062v1.pdf')

files = {
    'files': ('2206.01062v1.pdf', open(file_path, 'rb'), 'application/pdf'),
}

response = await async_client.post(url, files=files, data={"parameters": json.dumps(parameters)})
assert response.status_code == 200, "Response should be 200 OK"

data = response.json()

Picture description options

When the picture description enrichment is activated, users may specify which model and which execution mode to use for this task. There are two choices for the execution mode: local will run the vision-language model directly, api will invoke an external API endpoint.

The local option is specified with:

{
  "picture_description_local": {
    "repo_id": "",  // Repository id from the Hugging Face Hub.
    "generation_config": {"max_new_tokens": 200, "do_sample": false},  // HF generation config.
    "prompt": "Describe this image in a few sentences. ",  // Prompt used when calling the vision-language model.
  }
}

The possible values for generation_config are documented in the Hugging Face text generation docs.

The api option is specified with:

{
  "picture_description_api": {
    "url": "",  // Endpoint which accepts openai-api compatible requests.
    "headers": {},  // Headers used for calling the API endpoint. For example, it could include authentication headers.
    "params": {},  // Model parameters.
    "timeout": 20,  // Timeout for the API request.
    "prompt": "Describe this image in a few sentences. ",  // Prompt used when calling the vision-language model.
  }
}

Example URLs are:

  • http://localhost:8000/v1/chat/completions for the local vllm api, with example params:

    • the HuggingFaceTB/SmolVLM-256M-Instruct model

      {
          "model": "HuggingFaceTB/SmolVLM-256M-Instruct",
          "max_completion_tokens": 200,
      }
    • the ibm-granite/granite-vision-3.2-2b model

      {
          "model": "ibm-granite/granite-vision-3.2-2b",
          "max_completion_tokens": 200,
      }
  • http://localhost:11434/v1/chat/completions for the local ollama api, with example params:

    • the granite3.2-vision:2b model

      {
          "model": "granite3.2-vision:2b"
      }

Note that when using picture_description_api, the server must be launched with DOCLING_SERVE_ENABLE_REMOTE_SERVICES=true.

Response format

The response can be a JSON Document or a File.

  • If you process only one file, the response will be a JSON document with the following format:

    {
      "document": {
        "md_content": "",
        "json_content": {},
        "html_content": "",
        "text_content": "",
        "doctags_content": ""
        },
      "status": "<success|partial_success|skipped|failure>",
      "processing_time": 0.0,
      "timings": {},
      "errors": []
    }

    Depending on the value you set in output_formats, the different items will be populated with their respective results or empty.

    processing_time is the Docling processing time in seconds, and timings (when enabled in the backend) provides the detailed timing of all the internal Docling components.

  • If you set the parameter return_as_file to True, the response will be a zip file.

  • If multiple files are generated (multiple inputs, or one input but multiple outputs with return_as_file True), the response will be a zip file.

Asynchronous API

TBA