Skip to content

Commit e5b91d6

Browse files
authored
Update model README.md files (open-edge-platform#2076)
Update the README for each algo
1 parent ecdde40 commit e5b91d6

File tree

16 files changed

+16
-16
lines changed

16 files changed

+16
-16
lines changed

src/anomalib/models/image/cfa/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ Coupled-hypersphere-based Feature Adaptation (CFA) localizes anomalies using fea
1616

1717
## Usage
1818

19-
`python tools/train.py --model cfa`
19+
`anomalib train --model Cfa --data MVTec --data.category <category>`
2020

2121
## Benchmark
2222

src/anomalib/models/image/cflow/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@ CFLOW model is based on a conditional normalizing flow framework adopted for ano
1414

1515
## Usage
1616

17-
`python tools/train.py --model cflow`
17+
`anomalib train --model Cflow --data MVTec --data.category <category>`
1818

1919
## Benchmark
2020

src/anomalib/models/image/csflow/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,7 @@ The anomaly score for each local position $(i,j)$ of the feature map $y^s$ at sc
3131

3232
## Usage
3333

34-
`python tools/train.py --model cs_flow`
34+
`anomalib train --model Csflow --data MVTec --data.category <category>`
3535

3636
## Benchmark
3737

src/anomalib/models/image/dfkde/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ In the anomaly classification stage, the features are first reduced to the first
1616

1717
## Usage
1818

19-
`python tools/train.py --model dfkde`
19+
`anomalib train --model Dfkde --data MVTec --data.category <category>`
2020

2121
## Benchmark
2222

src/anomalib/models/image/dfm/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ In the anomaly classification stage, class-conditional PCA transformations and G
1818

1919
## Usage
2020

21-
`python tools/train.py --model dfm`
21+
`anomalib train --model Dfm --data MVTec --data.category <category>`
2222

2323
## Benchmark
2424

src/anomalib/models/image/draem/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ For optimal results, DRAEM requires specifying the path to a folder of image dat
1616

1717
## Usage
1818

19-
`python tools/train.py --model draem`
19+
`anomalib train --model Draem --data MVTec --data.category <category>`
2020

2121
## Benchmark
2222

src/anomalib/models/image/dsr/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@ DSR is a quantized-feature based algorithm that consists of an autoencoder with
1414

1515
## Usage
1616

17-
`python tools/train.py --model dsr`
17+
`anomalib train --model Dsr --data MVTec --data.category <category>`
1818

1919
## Benchmark
2020

src/anomalib/models/image/efficient_ad/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ Anomalies are detected as the difference in output feature maps between the teac
1818

1919
## Usage
2020

21-
`anomalib train --model EfficientAd --data anomalib.data.MVTec --data.train_batch_size 1`
21+
`anomalib train --model EfficientAd --data anomalib.data.MVTec --data.category <category> --data.train_batch_size 1`
2222

2323
## Benchmark
2424

src/anomalib/models/image/fastflow/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@ FastFlow is a two-dimensional normalizing flow-based probability distribution es
1414

1515
## Usage
1616

17-
`python tools/train.py --model fastflow`
17+
`anomalib train --model Fastflow --data MVTec --data.category <category>`
1818

1919
## Benchmark
2020

src/anomalib/models/image/ganomaly/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ The key idea here is that, during inference, when an anomalous image is passed t
1616

1717
## Usage
1818

19-
`python tools/train.py --model ganomaly`
19+
`anomalib train --model Ganomaly --data MVTec --data.category <category>`
2020

2121
## Benchmark
2222

src/anomalib/models/image/padim/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ During inference, Mahalanobis distance is used to score each patch position of t
1616

1717
## Usage
1818

19-
`python tools/train.py --model padim`
19+
`anomalib train --model Padim --data MVTec --data.category <category>`
2020

2121
## Benchmark
2222

src/anomalib/models/image/patchcore/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ During inference this memory bank is coreset subsampled. Coreset subsampling gen
1616

1717
## Usage
1818

19-
`python tools/train.py --model patchcore`
19+
`anomalib train --model Patchcore --data MVTec --data.category <category>`
2020

2121
## Benchmark
2222

src/anomalib/models/image/reverse_distillation/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ During testing, a similar step is followed but this time the cosine distance bet
1616

1717
## Usage
1818

19-
`python tools/train.py --model reverse_distillation`
19+
`anomalib train --model ReverseDistillation --data MVTec --data.category <category>`
2020

2121
## Benchmark
2222

src/anomalib/models/image/rkde/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@ Before fitting the KDE model, the dimensionality of the feature vectors is reduc
2727

2828
## Usage and parameters
2929

30-
`python tools/train.py --model rkde`
30+
`anomalib train --model Rkde --data MVTec --data.category <category>`
3131

3232
| Parameter | Affects Stage | Description | Type | Options |
3333
| :----------------------- | :----------------- | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :----- | :------------ |

src/anomalib/models/image/stfpm/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ During inference, the feature pyramids of teacher and student networks are compa
1616

1717
## Usage
1818

19-
`python tools/train.py --model stfpm`
19+
`anomalib train --model Stfpm --data MVTec --data.category <category>`
2020

2121
## Benchmark
2222

src/anomalib/models/image/uflow/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -52,7 +52,7 @@ In order to obtain the same exact results, although the architecture parameters
5252

5353
## Usage
5454

55-
`python tools/train.py --model uflow`
55+
`anomalib train --model Uflow --data MVTec --data.category <category>`
5656

5757
## Download data
5858

0 commit comments

Comments
 (0)