-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path02-extract-logs.py
executable file
·281 lines (216 loc) · 10.7 KB
/
02-extract-logs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
#!/usr/bin/env python3
# Description: This script is used to parse and extract log information from the CSV files.
# The parsed information is organized in a dictionary and stored on the output file.
import argparse
import glob
import json
import os
import pickle
import numpy as np
import pandas as pd
from utils.instance_aliases import INSTANCE_ALIASES
from utils.instance_prices import INSTANCE_PRICES
# ====================================================
# Utility functions
def error(msg):
print('ERROR:', msg)
exit(1)
def warning(msg):
print('WARNING:', msg)
verbosity_level = 0
def verbose(msg, level=0):
if level <= verbosity_level:
print(' ' * (level - 1), msg)
# =============================================================================================
# Functions to extract data and/or summarize the dataframes built from the CSV files.
# =============================================================================================
def mean_range(df, start, end):
df2 = df[start:end]
return {'mean': float(df2.mean()), 'sum': float(df2.sum()), 'size': df2.size}
def wait_its_millis(df, ignore_it, consider_ms):
# Wait at least *X* iterations, consider at least *Y* milliseconds
# print(f'wait_its_millis\tignore_it:{ignore_it}\tconsider_ms:{consider_ms}')
it_end = ignore_it
exec_time = 0
while exec_time <= consider_ms and len(df) > it_end + 1:
it_end += 1
exec_time += df[it_end]
# print(f'it_end:{it_end}\texec_time:{exec_time}')
df2 = df[ignore_it:it_end]
# print(f'wait_its_millis[{ignore_it}:{it_end}]\tWaiting: {df2.sum()}ms\tignoring: {df[:ignore_it].sum()}ms\n')
return {'mean': float(df2.mean()), 'sum': float(df2.sum()), 'size': df2.size}
def wait_millis(df, ignore_ms, consider_ms):
# Wait at least *X* milliseconds, consider at least *Y* milliseconds
# print(f'wait_millis\tignore_ms:{ignore_ms}\tconsider_ms:{consider_ms}')
exec_time = 0
it_start = 0
# Ignore fisrt part of the execution
while exec_time <= ignore_ms and len(df) > it_start:
exec_time += df[it_start]
it_start += 1
# print(f'it_start:{it_start}\texec_time:{exec_time}')
# print(f'Start[{it_start}]\tWaiting: {df[:it_start].sum()}s')
it_end = it_start + 1
while exec_time <= ignore_ms + consider_ms and len(df) > it_end:
exec_time += df[it_end]
it_end += 1
# print(f'it_end:{it_end}\texec_time:{exec_time}')
# print(f'End[{it_end}]\t\tComputed time {df[it_start:it_end].sum()}\t\tTotal exec time {df[:it_end].sum()}')
df2 = df[it_start:it_end]
# print(f'wait_millis\tit_start:{it_start}\tit_end:{it_end}\texec_time:{df2.sum()}\tignoring: {df[:it_start].sum()}ms\n')
return (df2.mean(), df2.sum(), df2.size)
proxy_set = {}
proxy_set['Real'] = lambda df: {'mean': float(df.mean()), 'sum': float(df.sum()), 'size': float(df.size)}, []
proxy_set['Second PI'] = lambda df: {'mean': float(df[1]), 'sum': float(df[1]), 'size': 1}, []
proxy_set['From 2 to 5'] = mean_range, [1, 5]
proxy_set['From 2 to 10'] = mean_range, [1, 10]
proxy_set['0.5_s'] = wait_its_millis, [0, 500]
proxy_set['0.5_s-first'] = wait_its_millis, [1, 500]
# proxy_set['0.5_s-5_first'] = wait_its_millis, [5, 500]
# proxy_set['0.5_s-10ms'] = wait_millis, [10, 500]
# proxy_set['0.5_s-50ms'] = wait_millis, [50, 500]
proxy_set['First 32'] = mean_range, [0, 32]
proxy_set['First 64'] = mean_range, [0, 64]
# =============================================================================================
# =============================================================================================
def parse_instance_dataframe(
instance_name, df, data, time_conversion_factor, PI_time_col='time', ABS_time_col='abs_time', extra_info=None
):
df[PI_time_col] = df[PI_time_col] * time_conversion_factor
# Extract the wallclock time (abs_time)
if ABS_time_col in df.columns:
df[ABS_time_col] = df[ABS_time_col] * time_conversion_factor
wallclock_time = df.groupby('rank')[ABS_time_col].max().max()
data['wallclock_time'] = float(wallclock_time)
elif extra_info and 'Time in seconds' in extra_info:
data['wallclock_time'] = float(extra_info['Time in seconds']) * 1000 # Convert sec to msec
inst_name, inst_count = instance_name.split('-')
inst_price = INSTANCE_PRICES[inst_name]
data['Instance Price'] = inst_price
data['Instance Name'] = inst_name
data['Instance Count'] = int(inst_count)
verbose(f'Instance Price: {inst_price}', 5)
verbose(f'Instance Name: {inst_name}', 5)
verbose(f'Instance Count: {inst_count}', 5)
data['Total PI Samples'] = samples_total = len(df)
verbose(f'Total PI Samples registered : {samples_total}', 5)
if 'rank' in df:
df = df[df['rank'] == 0]
elif extra_info and 'Total processes' in extra_info:
# TODO: Jeff: Fazer algo parecido com o da selecao no pre-processamento(raw_read_rank_0)??
num_processes = int(extra_info['Total processes'])
# df = df[df.index % num_processes == int(num_processes/2)] # Assuming that the PIs are evenly distributed
df = pd.DataFrame(
{'time': df.groupby(df.index // num_processes)['time'].mean()}
) # Assuming that Rank0 is the mean of every X iterations
data['PI Samples rank0'] = samples_rank0 = len(df)
verbose(f'PI Samples registerd in rank0: {samples_rank0}', 5)
verbose(f'Total / rank0 PI Samples : {samples_total/samples_rank0}', 5)
df = df[PI_time_col].reset_index(drop=True)
# Extract all the proxy information from the dataframe
for proxy, operations in proxy_set.items():
data[proxy] = operations[0](df, *operations[1])
# print("Proxy:", proxy, "--", data[proxy])
# =============================================================================================
# =============================================================================================
# Parse data generated by user
def parse_user_data(user, parsed_data, csv_files):
if user in parsed_data:
warning(f'Already parsed user: {user} -- Skipping it!!!')
return
parsed_data['Users'][user] = {}
verbose(f'Processing CSV files from user: {user}', 2)
user_csv_files = list(filter(lambda x: user in x, csv_files))
# Parse User apps
user_apps = list(set(map(lambda x: x.split('/')[-2], user_csv_files)))
user_apps.sort()
parsed_data['Users'][user]['apps'] = {}
# For each user application
for app_name in user_apps:
verbose(f'Processing app {app_name} from user: {user}', 3)
if app_name in parsed_data['Users'][user]['apps']:
warning(f'WARNING: App {app_name} already parsed for user {user} -- Skipping it!!!')
continue
parsed_data['Users'][user]['apps'][app_name] = {}
# List of CSV files for user / app
user_app_csv_files = list(filter(lambda x: app_name in x, user_csv_files))
for instance_csv_file in user_app_csv_files:
dataset_name = app_name
if dataset_name not in parsed_data['Users'][user]['apps'][app_name]:
parsed_data['Users'][user]['apps'][app_name][dataset_name] = {}
# Read experiment CSV file
instance_name = INSTANCE_ALIASES[instance_csv_file.split('/')[-1].replace('.csv', '')]
verbose(f'Processing experiment ({dataset_name} {instance_name}) {instance_csv_file}', 4)
if instance_name in parsed_data['Users'][user]['apps'][app_name][dataset_name]:
warning(
f'WARNING: Instance {instance_name} already parsed for app {app_name} / user {user} -- Skipping it!!!'
)
continue
# Store user/app/experiment information
parsed_data['Users'][user]['apps'][app_name][dataset_name][instance_name] = {
'csv_filename': instance_csv_file
}
# Parse CSV file
df = pd.read_csv(instance_csv_file, dtype=np.float64)
if df.size == 0:
warning(f'Could not extract information from CSV file: {instance_csv_file}')
continue
if len(df.keys()) == 1:
df.columns = ['time']
# FIX results from user01's experiments: Convert time from sec to msec
time_conversion_factor = 1000 # Convert sec to msec
if any(name in instance_csv_file.lower() for name in ['user01']):
time_conversion_factor = 0.001 # Convert usec to msec
# Apparently, the results collected by 'user02' switched columns abs_time and time. Adjusting for this case.
if user == 'user02':
PI_time_col = 'abs_time'
ABS_time_col = 'time'
else:
PI_time_col = 'time'
ABS_time_col = 'abs_time'
extra_info = None
extra_info_file = instance_csv_file.replace('.csv', '_info.json')
if os.path.exists(extra_info_file):
with open(extra_info_file, 'r') as file:
extra_info = json.load(file)
parse_instance_dataframe(
instance_name,
df,
parsed_data['Users'][user]['apps'][app_name][dataset_name][instance_name],
time_conversion_factor,
PI_time_col,
ABS_time_col,
extra_info,
)
# =============================================================================================
if __name__ == '__main__':
# Initialize parser
parser = argparse.ArgumentParser()
# Adding optional argument
parser.add_argument('-i', '--input_dir', help='Input directory')
parser.add_argument('-o', '--output_file', help='Output file (.pkl)')
parser.add_argument('-v', '--verbosity', help='Verbosity level: 0 (default), 1, 2, 3, 4')
# Read arguments from command line
args = parser.parse_args()
if args.verbosity:
verbosity_level = int(args.verbosity)
if not args.input_dir:
error('Input directory expected but not provided (-i)')
if not args.output_file:
error('Output filename expected but not provided (-o)')
if not os.path.exists(args.input_dir):
error(f'{args.input_dir} is an invalid directory!')
# CSV files
verbose(f'Parsing files from {args.input_dir}', 1)
csv_files = glob.glob(args.input_dir + '/*/*/*/*.csv', recursive=True)
# User names
usernames = list(set(map(lambda x: x.split('/')[-3], csv_files)))
usernames.sort()
verbose('Usernames:' + str(usernames), 2)
parsed_data = {'Users': {}}
for user in usernames:
parse_user_data(user, parsed_data, csv_files)
# break
verbose(f'Storing results at {args.output_file}', 1)
with open(args.output_file, 'wb') as file:
pickle.dump(parsed_data, file)