generated from HugoBlox/theme-research-group
-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpublications.bib
320 lines (278 loc) · 12.7 KB
/
publications.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
@article{lai2023self,
title={Self-supervised Video Representation Learning via Capturing Semantic Changes Indicated by Saccades},
author={Lai, Qiuxia and Zeng, Ailing and Wang, Ye and Cao, Lihong and Li, Yu and Xu, Qiang},
journal={IEEE Transactions on Circuits and Systems for Video Technology},
year={2023},
publisher={IEEE}
}
@article{zhong2024dspo,
title={DSPO: An End-to-End Framework for Direct Sorted Portfolio Construction},
author={Zhong, Jianyuan and Xu, Zhijian and Wang, Saizhuo and Wen, Xiangyu and Guo, Jian and Xu, Qiang},
journal={arXiv preprint arXiv:2405.15833},
year={2024}
}
@inproceedings{ju2023human,
title={Human-art: A versatile human-centric dataset bridging natural and artificial scenes},
author={Ju, Xuan and Zeng, Ailing and Wang, Jianan and Xu, Qiang and Zhang, Lei},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={618--629},
year={2023}
}
@article{liu2022scinet,
title={Scinet: Time series modeling and forecasting with sample convolution and interaction},
author={Liu, Minhao and Zeng, Ailing and Chen, Muxi and Xu, Zhijian and Lai, Qiuxia and Ma, Lingna and Xu, Qiang},
journal={Advances in Neural Information Processing Systems},
volume={35},
pages={5816--5828},
year={2022}
}
@inproceedings{ju2023humansd,
title={Humansd: A native skeleton-guided diffusion model for human image generation},
author={Ju, Xuan and Zeng, Ailing and Zhao, Chenchen and Wang, Jianan and Zhang, Lei and Xu, Qiang},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={15988--15998},
year={2023}
}
@inproceedings{yang2024mma,
title={Mma-diffusion: Multimodal attack on diffusion models},
author={Yang, Yijun and Gao, Ruiyuan and Wang, Xiaosen and Ho, Tsung-Yi and Xu, Nan and Xu, Qiang},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={7737--7746},
year={2024}
}
@article{chen2024hibug,
title={HiBug: on human-interpretable model debug},
author={Chen, Muxi and Li, Yu and Xu, Qiang},
journal={Advances in Neural Information Processing Systems},
volume={36},
year={2024}
}
@inproceedings{zeng2023transformers,
title={Are transformers effective for time series forecasting?},
author={Zeng, Ailing and Chen, Muxi and Zhang, Lei and Xu, Qiang},
booktitle={Proceedings of the AAAI conference on artificial intelligence},
volume={37},
number={9},
pages={11121--11128},
year={2023}
}
@inproceedings{wang2022functionality,
title={Functionality matters in netlist representation learning},
author={Wang, Ziyi and Bai, Chen and He, Zhuolun and Zhang, Guangliang and Xu, Qiang and Ho, Tsung-Yi and Yu, Bei and Huang, Yu},
booktitle={Proceedings of the 59th ACM/IEEE Design Automation Conference},
pages={61--66},
year={2022}
}
@article{xu2023fits,
title={FITS: Modeling time series with $10 k $ parameters},
author={Xu, Zhijian and Zeng, Ailing and Xu, Qiang},
journal={arXiv preprint arXiv:2307.03756},
year={2023}
}
@article{zhong2023llm4eda,
title={Llm4eda: Emerging progress in large language models for electronic design automation},
author={Zhong, Ruizhe and Du, Xingbo and Kai, Shixiong and Tang, Zhentao and Xu, Siyuan and Zhen, Hui-Ling and Hao, Jianye and Xu, Qiang and Yuan, Mingxuan and Yan, Junchi},
journal={arXiv preprint arXiv:2401.12224},
year={2023}
}
@article{gao2023magicdrive,
title={Magicdrive: Street view generation with diverse 3d geometry control},
author={Gao, Ruiyuan and Chen, Kai and Xie, Enze and Hong, Lanqing and Li, Zhenguo and Yeung, Dit-Yan and Xu, Qiang},
journal={arXiv preprint arXiv:2310.02601},
year={2023}
}
@article{ju2023direct,
title={Direct inversion: Boosting diffusion-based editing with 3 lines of code},
author={Ju, Xuan and Zeng, Ailing and Bian, Yuxuan and Liu, Shaoteng and Xu, Qiang},
journal={arXiv preprint arXiv:2310.01506},
year={2023}
}
@article{cui2024origen,
title={OriGen: Enhancing RTL Code Generation with Code-to-Code Augmentation and Self-Reflection},
author={Cui, Fan and Yin, Chenyang and Zhou, Kexing and Xiao, Youwei and Sun, Guangyu and Xu, Qiang and Guo, Qipeng and Song, Demin and Lin, Dahua and Zhang, Xingcheng and others},
journal={arXiv preprint arXiv:2407.16237},
year={2024}
}
@inproceedings{li2022hybridrepair,
title={HybridRepair: towards annotation-efficient repair for deep learning models},
author={Li, Yu and Chen, Muxi and Xu, Qiang},
booktitle={Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis},
pages={227--238},
year={2022}
}
@article{yang2022you,
title={What you see is not what the network infers: Detecting adversarial examples based on semantic contradiction},
author={Yang, Yijun and Gao, Ruiyuan and Li, Yu and Lai, Qiuxia and Xu, Qiang},
journal={arXiv preprint arXiv:2201.09650},
year={2022}
}
@article{wang2024fgnn2,
title={FGNN2: A Powerful Pre-Training Framework for Learning the Logic Functionality of Circuits},
author={Wang, Ziyi and Bai, Chen and He, Zhuolun and Zhang, Guangliang and Xu, Qiang and Ho, Tsung-Yi and Huang, Yu and Yu, Bei},
journal={IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems},
year={2024},
publisher={IEEE}
}
@article{bian2024multi,
title={Multi-patch prediction: Adapting llms for time series representation learning},
author={Bian, Yuxuan and Ju, Xuan and Li, Jiangtong and Xu, Zhijian and Cheng, Dawei and Xu, Qiang},
journal={arXiv preprint arXiv:2402.04852},
year={2024}
}
@inproceedings{gao2023diffguard,
title={Diffguard: Semantic mismatch-guided out-of-distribution detection using pre-trained diffusion models},
author={Gao, Ruiyuan and Zhao, Chenchen and Hong, Lanqing and Xu, Qiang},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={1579--1589},
year={2023}
}
@inproceedings{he2022your,
title={Be Your Own Neighborhood: Detecting Adversarial Examples by the Neighborhood Relations Built on Self-Supervised Learning},
author={He, Zhiyuan and Yang, Yijun and Chen, Pin-Yu and Xu, Qiang and Ho, Tsung-Yi},
booktitle={Forty-first International Conference on Machine Learning},
year={2022}
}
@inproceedings{yang2022out,
title={Out-of-distribution detection with semantic mismatch under masking},
author={Yang, Yijun and Gao, Ruiyuan and Xu, Qiang},
booktitle={European Conference on Computer Vision},
pages={373--390},
year={2022},
organization={Springer}
}
@article{shi2024deepgate3,
title={DeepGate3: towards scalable circuit representation learning},
author={Shi, Zhengyuan and Zheng, Ziyang and Khan, Sadaf and Zhong, Jianyuan and Li, Min and Xu, Qiang},
journal={arXiv preprint arXiv:2407.11095},
year={2024}
}
@inproceedings{ju2024pnp,
title={Pnp inversion: Boosting diffusion-based editing with 3 lines of code},
author={Ju, Xuan and Zeng, Ailing and Bian, Yuxuan and Liu, Shaoteng and Xu, Qiang},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024}
}
@article{chen2024dawn,
title={The dawn of ai-native eda: Promises and challenges of large circuit models},
author={Chen, Lei and Chen, Yiqi and Chu, Zhufei and Fang, Wenji and Ho, Tsung-Yi and Huang, Yu and Khan, Sadaf and Li, Min and Li, Xingquan and Liang, Yun and others},
journal={arXiv preprint arXiv:2403.07257},
year={2024}
}
@inproceedings{shi2023deepgate2,
title={Deepgate2: Functionality-aware circuit representation learning},
author={Shi, Zhengyuan and Pan, Hongyang and Khan, Sadaf and Li, Min and Liu, Yi and Huang, Junhua and Zhen, Hui-Ling and Yuan, Mingxuan and Chu, Zhufei and Xu, Qiang},
booktitle={2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD)},
pages={1--9},
year={2023},
organization={IEEE}
}
@inproceedings{li2023eda,
title={On EDA-Driven Learning for SAT Solving},
author={Li, Min and Shi, Zhengyuan and Lai, Qiuxia and Khan, Sadaf and Cai, Shaowei and Xu, Qiang},
booktitle={2023 60th ACM/IEEE Design Automation Conference (DAC)},
pages={1--6},
year={2023},
organization={IEEE}
}
@article{li2022empirical,
title={An empirical study on the efficacy of deep active learning for image classification},
author={Li, Yu and Chen, Muxi and Liu, Yannan and He, Daojing and Xu, Qiang},
journal={arXiv preprint arXiv:2212.03088},
year={2022}
}
@article{chen2024evaluating,
title={Evaluating text-to-image generative models: An empirical study on human image synthesis},
author={Chen, Muxi and Liu, Yi and Yi, Jian and Xu, Changran and Lai, Qiuxia and Wang, Hongliang and Ho, Tsung-Yi and Xu, Qiang},
journal={arXiv preprint arXiv:2403.05125},
year={2024}
}
@inproceedings{shi2023satformer,
title={Satformer: Transformer-based unsat core learning},
author={Shi, Zhengyuan and Li, Min and Liu, Yi and Khan, Sadaf and Huang, Junhua and Zhen, Hui-Ling and Yuan, Mingxuan and Xu, Qiang},
booktitle={2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD)},
pages={1--4},
year={2023},
organization={IEEE}
}
@inproceedings{khan2024deepseq,
title={DeepSeq: Deep Sequential Circuit Learning},
author={Khan, Sadaf and Shi, Zhengyuan and Li, Min and Xu, Qiang},
booktitle={2024 Design, Automation \& Test in Europe Conference \& Exhibition (DATE)},
pages={1--2},
year={2024},
organization={IEEE}
}
@article{shi2022satformer,
title={Satformer: Transformers for SAT solving},
author={Shi, Zhengyuan and Li, Min and Khan, Sadaf and Zhen, Hui-Ling and Yuan, Mingxuan and Xu, Qiang},
journal={arXiv preprint arXiv:2209.00953},
year={2022}
}
@article{yang2024guardt2i,
title={GuardT2I: Defending Text-to-Image Models from Adversarial Prompts},
author={Yang, Yijun and Gao, Ruiyuan and Yang, Xiao and Zhong, Jianyuan and Xu, Qiang},
journal={arXiv preprint arXiv:2403.01446},
year={2024}
}
@inproceedings{shi2022deeptpi,
title={Deeptpi: Test point insertion with deep reinforcement learning},
author={Shi, Zhengyuan and Li, Min and Khan, Sadaf and Wang, Liuzheng and Wang, Naixing and Huang, Yu and Xu, Qiang},
booktitle={2022 IEEE International Test Conference (ITC)},
pages={194--203},
year={2022},
organization={IEEE}
}
@article{chen2023fraug,
title={Fraug: Frequency domain augmentation for time series forecasting},
author={Chen, Muxi and Xu, Zhijian and Zeng, Ailing and Xu, Qiang},
journal={arXiv preprint arXiv:2302.09292},
year={2023}
}
@inproceedings{chen2023integrating,
title={Integrating exact simulation into sweeping for datapath combinational equivalence checking},
author={Chen, Zhihan and Zhang, Xindi and Qian, Yuhang and Xu, Qiang and Cai, Shaowei},
booktitle={2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD)},
pages={1--9},
year={2023},
organization={IEEE}
}
@inproceedings{peng2023expert,
title={EXPERT: EXPloiting DRAM ERror Types to Improve the Effective Forecasting Coverage in the Field},
author={Peng, Xiangjun and Huang, Zheng and Cantrell, Alex and Shu, Bi Hua and Xie, Ke Ke and Li, Yi and Li, Yu and Jiang, Li and Xu, Qiang and Yang, Ming-Chang},
booktitle={2023 53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks-Supplemental Volume (DSN-S)},
pages={35--41},
year={2023},
organization={IEEE}
}
@article{xu2024beyond,
title={Beyond Trend and Periodicity: Guiding Time Series Forecasting with Textual Cues},
author={Xu, Zhijian and Bian, Yuxuan and Zhong, Jianyuan and Wen, Xiangyu and Xu, Qiang},
journal={arXiv preprint arXiv:2405.13522},
year={2024}
}
@article{li2022deepsat,
title={Deepsat: An eda-driven learning framework for sat},
author={Li, Min and Shi, Zhengyuan and Lai, Qiuxia and Khan, Sadaf and Cai, Shaowei and Xu, Qiang},
journal={arXiv preprint arXiv:2205.13745},
year={2022}
}
@article{gao2024magicdrive3d,
title={MagicDrive3D: Controllable 3D Generation for Any-View Rendering in Street Scenes},
author={Gao, Ruiyuan and Chen, Kai and Li, Zhihao and Hong, Lanqing and Li, Zhenguo and Xu, Qiang},
journal={arXiv preprint arXiv:2405.14475},
year={2024}
}
@inproceedings{li2023towards,
title={Towards Robust Deep Neural Networks Against Design-Time and Run-Time Failures},
author={Li, Yu and Xu, Qiang},
booktitle={2023 IEEE International Test Conference (ITC)},
pages={196--205},
year={2023},
organization={IEEE}
}
@article{zhu2024cktsat,
title={CKTSAT: Circuit Preprocessing Driven SAT Solver},
author={Zhu, Jiaying and Shi, Zhengyuan and Liu, Yi and Xu, Qiang},
journal={SAT COMPETITION 2024},
pages={28}
}