-
-
Notifications
You must be signed in to change notification settings - Fork 3.3k
/
Copy pathbernoulli.py
125 lines (110 loc) · 3.66 KB
/
bernoulli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import numpy as np
from prml.rv.rv import RandomVariable
from prml.rv.beta import Beta
class Bernoulli(RandomVariable):
"""
Bernoulli distribution
p(x|mu) = mu^x (1 - mu)^(1 - x)
"""
def __init__(self, mu=None):
"""
construct Bernoulli distribution
Parameters
----------
mu : np.ndarray or Beta
probability of value 1 for each element
"""
super().__init__()
self.mu = mu
@property
def mu(self):
return self.parameter["mu"]
@mu.setter
def mu(self, mu):
if isinstance(mu, (int, float, np.number)):
if mu > 1 or mu < 0:
raise ValueError(f"mu must be in [0, 1], not {mu}")
self.parameter["mu"] = np.asarray(mu)
elif isinstance(mu, np.ndarray):
if (mu > 1).any() or (mu < 0).any():
raise ValueError("mu must be in [0, 1]")
self.parameter["mu"] = mu
elif isinstance(mu, Beta):
self.parameter["mu"] = mu
else:
if mu is not None:
raise TypeError(f"{type(mu)} is not supported for mu")
self.parameter["mu"] = None
@property
def ndim(self):
if hasattr(self.mu, "ndim"):
return self.mu.ndim
else:
return None
@property
def size(self):
if hasattr(self.mu, "size"):
return self.mu.size
else:
return None
@property
def shape(self):
if hasattr(self.mu, "shape"):
return self.mu.shape
else:
return None
def _fit(self, X):
if isinstance(self.mu, Beta):
self._bayes(X)
elif isinstance(self.mu, RandomVariable):
raise NotImplementedError
else:
self._ml(X)
def _ml(self, X):
n_zeros = np.count_nonzero((X == 0).astype(np.int))
n_ones = np.count_nonzero((X == 1).astype(np.int))
assert X.size == n_zeros + n_ones, (
"{X.size} is not equal to {n_zeros} plus {n_ones}"
)
self.mu = np.mean(X, axis=0)
def _map(self, X):
assert isinstance(self.mu, Beta)
assert X.shape[1:] == self.mu.shape
n_ones = (X == 1).sum(axis=0)
n_zeros = (X == 0).sum(axis=0)
assert X.size == n_zeros.sum() + n_ones.sum(), (
f"{X.size} is not equal to {n_zeros} plus {n_ones}"
)
n_ones = n_ones + self.mu.n_ones
n_zeros = n_zeros + self.mu.n_zeros
self.prob = (n_ones - 1) / (n_ones + n_zeros - 2)
def _bayes(self, X):
assert isinstance(self.mu, Beta)
assert X.shape[1:] == self.mu.shape
n_ones = (X == 1).sum(axis=0)
n_zeros = (X == 0).sum(axis=0)
assert X.size == n_zeros.sum() + n_ones.sum(), (
"input X must only has 0 or 1"
)
self.mu.n_zeros += n_zeros
self.mu.n_ones += n_ones
def _pdf(self, X):
assert isinstance(mu, np.ndarray)
return np.prod(
self.mu ** X * (1 - self.mu) ** (1 - X)
)
def _draw(self, sample_size=1):
if isinstance(self.mu, np.ndarray):
return (
self.mu > np.random.uniform(size=(sample_size,) + self.shape)
).astype(np.int)
elif isinstance(self.mu, Beta):
return (
self.mu.n_ones / (self.mu.n_ones + self.mu.n_zeros)
> np.random.uniform(size=(sample_size,) + self.shape)
).astype(np.int)
elif isinstance(self.mu, RandomVariable):
return (
self.mu.draw(sample_size)
> np.random.uniform(size=(sample_size,) + self.shape)
)