|
| 1 | +import os.path |
| 2 | +import logging |
| 3 | + |
| 4 | +import numpy as np |
| 5 | +from datetime import datetime |
| 6 | +from collections import OrderedDict |
| 7 | + |
| 8 | +import torch |
| 9 | + |
| 10 | +from utils import utils_logger |
| 11 | +from utils import utils_model |
| 12 | +from utils import utils_image as util |
| 13 | +#import os |
| 14 | +#os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" |
| 15 | + |
| 16 | + |
| 17 | +''' |
| 18 | +Spyder (Python 3.6) |
| 19 | +PyTorch 1.1.0 |
| 20 | +Windows 10 or Linux |
| 21 | +
|
| 22 | + |
| 23 | +github: https://github.com/cszn/KAIR |
| 24 | + https://github.com/cszn/DnCNN |
| 25 | +
|
| 26 | +@article{zhang2017beyond, |
| 27 | + title={Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising}, |
| 28 | + author={Zhang, Kai and Zuo, Wangmeng and Chen, Yunjin and Meng, Deyu and Zhang, Lei}, |
| 29 | + journal={IEEE Transactions on Image Processing}, |
| 30 | + volume={26}, |
| 31 | + number={7}, |
| 32 | + pages={3142--3155}, |
| 33 | + year={2017}, |
| 34 | + publisher={IEEE} |
| 35 | +} |
| 36 | +
|
| 37 | +% If you have any question, please feel free to contact with me. |
| 38 | +% Kai Zhang (e-mail: [email protected]; github: https://github.com/cszn) |
| 39 | +
|
| 40 | +by Kai Zhang (12/Dec./2019) |
| 41 | +''' |
| 42 | + |
| 43 | +""" |
| 44 | +# -------------------------------------------- |
| 45 | +|--model_zoo # model_zoo |
| 46 | + |--dncnn3 # model_name |
| 47 | +|--testset # testsets |
| 48 | + |--set12 # testset_name |
| 49 | + |--bsd68 |
| 50 | +|--results # results |
| 51 | + |--set12_dncnn3 # result_name = testset_name + '_' + model_name |
| 52 | +# -------------------------------------------- |
| 53 | +""" |
| 54 | + |
| 55 | + |
| 56 | +def main(): |
| 57 | + |
| 58 | + # ---------------------------------------- |
| 59 | + # Preparation |
| 60 | + # ---------------------------------------- |
| 61 | + |
| 62 | + model_name = 'dncnn3' # 'dncnn3'- can be used for blind Gaussian denoising, JPEG deblocking (quality factor 5-100) and super-resolution (x234) |
| 63 | + |
| 64 | + # important! |
| 65 | + testset_name = 'bsd68' # test set, low-quality grayscale/color JPEG images |
| 66 | + n_channels = 1 # set 1 for grayscale image, set 3 for color image |
| 67 | + |
| 68 | + |
| 69 | + x8 = False # default: False, x8 to boost performance |
| 70 | + testsets = 'testsets' # fixed |
| 71 | + results = 'results' # fixed |
| 72 | + result_name = testset_name + '_' + model_name # fixed |
| 73 | + L_path = os.path.join(testsets, testset_name) # L_path, for Low-quality grayscale/Y-channel JPEG images |
| 74 | + E_path = os.path.join(results, result_name) # E_path, for Estimated images |
| 75 | + util.mkdir(E_path) |
| 76 | + |
| 77 | + model_pool = 'model_zoo' # fixed |
| 78 | + model_path = os.path.join(model_pool, model_name+'.pth') |
| 79 | + logger_name = result_name |
| 80 | + utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name+'.log')) |
| 81 | + logger = logging.getLogger(logger_name) |
| 82 | + |
| 83 | + device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
| 84 | + |
| 85 | + # ---------------------------------------- |
| 86 | + # load model |
| 87 | + # ---------------------------------------- |
| 88 | + |
| 89 | + from models.network_dncnn import DnCNN as net |
| 90 | + model = net(in_nc=1, out_nc=1, nc=64, nb=20, act_mode='R') |
| 91 | + model.load_state_dict(torch.load(model_path), strict=True) |
| 92 | + model.eval() |
| 93 | + for k, v in model.named_parameters(): |
| 94 | + v.requires_grad = False |
| 95 | + model = model.to(device) |
| 96 | + logger.info('Model path: {:s}'.format(model_path)) |
| 97 | + number_parameters = sum(map(lambda x: x.numel(), model.parameters())) |
| 98 | + logger.info('Params number: {}'.format(number_parameters)) |
| 99 | + |
| 100 | + logger.info(L_path) |
| 101 | + L_paths = util.get_image_paths(L_path) |
| 102 | + |
| 103 | + for idx, img in enumerate(L_paths): |
| 104 | + |
| 105 | + # ------------------------------------ |
| 106 | + # (1) img_L |
| 107 | + # ------------------------------------ |
| 108 | + img_name, ext = os.path.splitext(os.path.basename(img)) |
| 109 | + logger.info('{:->4d}--> {:>10s}'.format(idx+1, img_name+ext)) |
| 110 | + img_L = util.imread_uint(img, n_channels=n_channels) |
| 111 | + img_L = util.uint2single(img_L) |
| 112 | + if n_channels == 3: |
| 113 | + ycbcr = util.rgb2ycbcr(img_L, False) |
| 114 | + img_L = ycbcr[..., 0:1] |
| 115 | + img_L = util.single2tensor4(img_L) |
| 116 | + img_L = img_L.to(device) |
| 117 | + |
| 118 | + # ------------------------------------ |
| 119 | + # (2) img_E |
| 120 | + # ------------------------------------ |
| 121 | + if not x8: |
| 122 | + img_E = model(img_L) |
| 123 | + else: |
| 124 | + img_E = utils_model.test_mode(model, img_L, mode=3) |
| 125 | + |
| 126 | + img_E = util.tensor2single(img_E) |
| 127 | + if n_channels == 3: |
| 128 | + ycbcr[..., 0] = img_E |
| 129 | + img_E = util.ycbcr2rgb(ycbcr) |
| 130 | + img_E = util.single2uint(img_E) |
| 131 | + |
| 132 | + # ------------------------------------ |
| 133 | + # save results |
| 134 | + # ------------------------------------ |
| 135 | + util.imsave(img_E, os.path.join(E_path, img_name+'.png')) |
| 136 | + |
| 137 | + |
| 138 | +if __name__ == '__main__': |
| 139 | + |
| 140 | + main() |
0 commit comments