|
| 1 | +import os.path |
| 2 | +import math |
| 3 | +import argparse |
| 4 | +import time |
| 5 | +import random |
| 6 | +import numpy as np |
| 7 | +from collections import OrderedDict |
| 8 | +import logging |
| 9 | +from torch.utils.data import DataLoader |
| 10 | +import torch |
| 11 | + |
| 12 | +from utils import utils_logger |
| 13 | +from utils import utils_image as util |
| 14 | +from utils import utils_option as option |
| 15 | +from utils import utils_sisr as sisr |
| 16 | + |
| 17 | +from data.select_dataset import define_Dataset |
| 18 | +from models.select_model import define_Model |
| 19 | + |
| 20 | + |
| 21 | +''' |
| 22 | +# -------------------------------------------- |
| 23 | +# training code for USRNet |
| 24 | +# -------------------------------------------- |
| 25 | + |
| 26 | +# github: https://github.com/cszn/KAIR |
| 27 | +# https://github.com/cszn/USRNet |
| 28 | +# |
| 29 | +# Reference: |
| 30 | +@inproceedings{zhang2020deep, |
| 31 | + title={Deep unfolding network for image super-resolution}, |
| 32 | + author={Zhang, Kai and Van Gool, Luc and Timofte, Radu}, |
| 33 | + booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, |
| 34 | + pages={3217--3226}, |
| 35 | + year={2020} |
| 36 | +} |
| 37 | +# -------------------------------------------- |
| 38 | +''' |
| 39 | + |
| 40 | + |
| 41 | +def main(json_path='options/train_usrnet.json'): |
| 42 | + |
| 43 | + ''' |
| 44 | + # ---------------------------------------- |
| 45 | + # Step--1 (prepare opt) |
| 46 | + # ---------------------------------------- |
| 47 | + ''' |
| 48 | + |
| 49 | + parser = argparse.ArgumentParser() |
| 50 | + parser.add_argument('-opt', type=str, default=json_path, help='Path to option JSON file.') |
| 51 | + |
| 52 | + opt = option.parse(parser.parse_args().opt, is_train=True) |
| 53 | + util.mkdirs((path for key, path in opt['path'].items() if 'pretrained' not in key)) |
| 54 | + |
| 55 | + # ---------------------------------------- |
| 56 | + # update opt |
| 57 | + # ---------------------------------------- |
| 58 | + # -->-->-->-->-->-->-->-->-->-->-->-->-->- |
| 59 | + init_iter, init_path_G = option.find_last_checkpoint(opt['path']['models'], net_type='G') |
| 60 | + opt['path']['pretrained_netG'] = init_path_G |
| 61 | + current_step = init_iter |
| 62 | + |
| 63 | + border = opt['scale'] |
| 64 | + # --<--<--<--<--<--<--<--<--<--<--<--<--<- |
| 65 | + |
| 66 | + # ---------------------------------------- |
| 67 | + # save opt to a '../option.json' file |
| 68 | + # ---------------------------------------- |
| 69 | + option.save(opt) |
| 70 | + |
| 71 | + # ---------------------------------------- |
| 72 | + # return None for missing key |
| 73 | + # ---------------------------------------- |
| 74 | + opt = option.dict_to_nonedict(opt) |
| 75 | + |
| 76 | + # ---------------------------------------- |
| 77 | + # configure logger |
| 78 | + # ---------------------------------------- |
| 79 | + logger_name = 'train' |
| 80 | + utils_logger.logger_info(logger_name, os.path.join(opt['path']['log'], logger_name+'.log')) |
| 81 | + logger = logging.getLogger(logger_name) |
| 82 | + logger.info(option.dict2str(opt)) |
| 83 | + |
| 84 | + |
| 85 | + # ---------------------------------------- |
| 86 | + # seed |
| 87 | + # ---------------------------------------- |
| 88 | + seed = opt['train']['manual_seed'] |
| 89 | + if seed is None: |
| 90 | + seed = random.randint(1, 10000) |
| 91 | + logger.info('Random seed: {}'.format(seed)) |
| 92 | + random.seed(seed) |
| 93 | + np.random.seed(seed) |
| 94 | + torch.manual_seed(seed) |
| 95 | + torch.cuda.manual_seed_all(seed) |
| 96 | + |
| 97 | + ''' |
| 98 | + # ---------------------------------------- |
| 99 | + # Step--2 (creat dataloader) |
| 100 | + # ---------------------------------------- |
| 101 | + ''' |
| 102 | + |
| 103 | + # ---------------------------------------- |
| 104 | + # 1) create_dataset |
| 105 | + # 2) creat_dataloader for train and test |
| 106 | + # ---------------------------------------- |
| 107 | + for phase, dataset_opt in opt['datasets'].items(): |
| 108 | + if phase == 'train': |
| 109 | + train_set = define_Dataset(dataset_opt) |
| 110 | + train_size = int(math.ceil(len(train_set) / dataset_opt['dataloader_batch_size'])) |
| 111 | + logger.info('Number of train images: {:,d}, iters: {:,d}'.format(len(train_set), train_size)) |
| 112 | + train_loader = DataLoader(train_set, |
| 113 | + batch_size=dataset_opt['dataloader_batch_size'], |
| 114 | + shuffle=dataset_opt['dataloader_shuffle'], |
| 115 | + num_workers=dataset_opt['dataloader_num_workers'], |
| 116 | + drop_last=True, |
| 117 | + pin_memory=True) |
| 118 | + elif phase == 'test': |
| 119 | + test_set = define_Dataset(dataset_opt) |
| 120 | + test_loader = DataLoader(test_set, batch_size=1, |
| 121 | + shuffle=False, num_workers=1, |
| 122 | + drop_last=False, pin_memory=True) |
| 123 | + else: |
| 124 | + raise NotImplementedError("Phase [%s] is not recognized." % phase) |
| 125 | + |
| 126 | + ''' |
| 127 | + # ---------------------------------------- |
| 128 | + # Step--3 (initialize model) |
| 129 | + # ---------------------------------------- |
| 130 | + ''' |
| 131 | + |
| 132 | + model = define_Model(opt) |
| 133 | + |
| 134 | + logger.info(model.info_network()) |
| 135 | + model.init_train() |
| 136 | + logger.info(model.info_params()) |
| 137 | + |
| 138 | + ''' |
| 139 | + # ---------------------------------------- |
| 140 | + # Step--4 (main training) |
| 141 | + # ---------------------------------------- |
| 142 | + ''' |
| 143 | + |
| 144 | + for epoch in range(1000000): # keep running |
| 145 | + for i, train_data in enumerate(train_loader): |
| 146 | + |
| 147 | + current_step += 1 |
| 148 | + |
| 149 | + # ------------------------------- |
| 150 | + # 1) update learning rate |
| 151 | + # ------------------------------- |
| 152 | + model.update_learning_rate(current_step) |
| 153 | + |
| 154 | + # ------------------------------- |
| 155 | + # 2) feed patch pairs |
| 156 | + # ------------------------------- |
| 157 | + model.feed_data(train_data) |
| 158 | + |
| 159 | + # ------------------------------- |
| 160 | + # 3) optimize parameters |
| 161 | + # ------------------------------- |
| 162 | + model.optimize_parameters(current_step) |
| 163 | + |
| 164 | + # ------------------------------- |
| 165 | + # 4) training information |
| 166 | + # ------------------------------- |
| 167 | + if current_step % opt['train']['checkpoint_print'] == 0: |
| 168 | + logs = model.current_log() # such as loss |
| 169 | + message = '<epoch:{:3d}, iter:{:8,d}, lr:{:.3e}> '.format(epoch, current_step, model.current_learning_rate()) |
| 170 | + for k, v in logs.items(): # merge log information into message |
| 171 | + message += '{:s}: {:.3e} '.format(k, v) |
| 172 | + logger.info(message) |
| 173 | + |
| 174 | + # ------------------------------- |
| 175 | + # 5) save model |
| 176 | + # ------------------------------- |
| 177 | + if current_step % opt['train']['checkpoint_save'] == 0: |
| 178 | + logger.info('Saving the model.') |
| 179 | + model.save(current_step) |
| 180 | + |
| 181 | + # ------------------------------- |
| 182 | + # 6) testing |
| 183 | + # ------------------------------- |
| 184 | + if current_step % opt['train']['checkpoint_test'] == 0: |
| 185 | + |
| 186 | + avg_psnr = 0.0 |
| 187 | + idx = 0 |
| 188 | + |
| 189 | + for test_data in test_loader: |
| 190 | + idx += 1 |
| 191 | + image_name_ext = os.path.basename(test_data['L_path'][0]) |
| 192 | + img_name, ext = os.path.splitext(image_name_ext) |
| 193 | + |
| 194 | + img_dir = os.path.join(opt['path']['images'], img_name) |
| 195 | + util.mkdir(img_dir) |
| 196 | + |
| 197 | + model.feed_data(test_data) |
| 198 | + model.test() |
| 199 | + |
| 200 | + visuals = model.current_visuals() |
| 201 | + E_img = util.tensor2uint(visuals['E']) |
| 202 | + H_img = util.tensor2uint(visuals['H']) |
| 203 | + |
| 204 | + # ----------------------- |
| 205 | + # save estimated image E |
| 206 | + # ----------------------- |
| 207 | + save_img_path = os.path.join(img_dir, '{:s}_{:d}.png'.format(img_name, current_step)) |
| 208 | + util.imsave(E_img, save_img_path) |
| 209 | + |
| 210 | + # ----------------------- |
| 211 | + # calculate PSNR |
| 212 | + # ----------------------- |
| 213 | + current_psnr = util.calculate_psnr(E_img, H_img, border=border) |
| 214 | + |
| 215 | + logger.info('{:->4d}--> {:>10s} | {:<4.2f}dB'.format(idx, image_name_ext, current_psnr)) |
| 216 | + |
| 217 | + avg_psnr += current_psnr |
| 218 | + |
| 219 | + avg_psnr = avg_psnr / idx |
| 220 | + |
| 221 | + # testing log |
| 222 | + logger.info('<epoch:{:3d}, iter:{:8,d}, Average PSNR : {:<.2f}dB\n'.format(epoch, current_step, avg_psnr)) |
| 223 | + |
| 224 | + logger.info('Saving the final model.') |
| 225 | + model.save('latest') |
| 226 | + logger.info('End of training.') |
| 227 | + |
| 228 | + |
| 229 | +if __name__ == '__main__': |
| 230 | + main() |
0 commit comments