@@ -130,7 +130,7 @@ def raw_noise(self, value: Tensor) -> None:
130
130
self .noise_covar .initialize (raw_noise = value )
131
131
132
132
def marginal (self , function_dist : MultivariateNormal , * args : Any , ** kwargs : Any ) -> MultivariateNormal :
133
- """
133
+ r """
134
134
:return: Analytic marginal :math:`p(\mathbf y)`.
135
135
"""
136
136
return super ().marginal (function_dist , * args , ** kwargs )
@@ -186,7 +186,7 @@ def log_marginal(
186
186
return res * ~ missing_idx
187
187
188
188
def marginal (self , function_dist : MultivariateNormal , * args : Any , ** kwargs : Any ) -> MultivariateNormal :
189
- """
189
+ r """
190
190
:return: Analytic marginal :math:`p(\mathbf y)`.
191
191
"""
192
192
return super ().marginal (function_dist , * args , ** kwargs )
@@ -306,14 +306,14 @@ def _shaped_noise_covar(self, base_shape: torch.Size, *params: Any, **kwargs: An
306
306
return res
307
307
308
308
def marginal (self , function_dist : MultivariateNormal , * args : Any , ** kwargs : Any ) -> MultivariateNormal :
309
- """
309
+ r """
310
310
:return: Analytic marginal :math:`p(\mathbf y)`.
311
311
"""
312
312
return super ().marginal (function_dist , * args , ** kwargs )
313
313
314
314
315
315
class DirichletClassificationLikelihood (FixedNoiseGaussianLikelihood ):
316
- """
316
+ r """
317
317
A classification likelihood that treats the labels as regression targets with fixed heteroscedastic noise.
318
318
From Milios et al, NeurIPS, 2018 [https://arxiv.org/abs/1805.10915].
319
319
@@ -408,7 +408,7 @@ def get_fantasy_likelihood(self, **kwargs: Any) -> "DirichletClassificationLikel
408
408
return fantasy_liklihood
409
409
410
410
def marginal (self , function_dist : MultivariateNormal , * args : Any , ** kwargs : Any ) -> MultivariateNormal :
411
- """
411
+ r """
412
412
:return: Analytic marginal :math:`p(\mathbf y)`.
413
413
"""
414
414
return super ().marginal (function_dist , * args , ** kwargs )
0 commit comments