|
| 1 | + |
| 2 | +from src.modules.sequential import Sequential |
| 3 | +from src.modules.linear import Linear |
| 4 | +from src.modules.convolution import Convolution |
| 5 | +from src.modules.convolution_ab import Convolution_ab |
| 6 | +from src.modules.reshape import Reshape |
| 7 | +from src.modules.proppool import PropPool |
| 8 | +from src.utils import load_json |
| 9 | +import numpy as np |
| 10 | +import cv2 |
| 11 | + |
| 12 | + |
| 13 | +def vgg_addmean(images): |
| 14 | + mean = [103.939, 116.779, 123.68] |
| 15 | + img_trans = [] |
| 16 | + for img in images: |
| 17 | + blue, green, red = np.split(img, 3, 2) |
| 18 | + img_trans.append(np.concatenate( |
| 19 | + [blue + mean[0], green + mean[1], red + mean[2]], 2), |
| 20 | + ) |
| 21 | + return img_trans |
| 22 | + |
| 23 | + |
| 24 | +def bgr_to_rgb(images): |
| 25 | + img_trans = [] |
| 26 | + for img in images: |
| 27 | + blue, green, red = np.split(img, 3, 2) |
| 28 | + img_trans.append(np.concatenate([red, green, blue], 2)) |
| 29 | + return img_trans |
| 30 | + |
| 31 | + |
| 32 | +class VGG16(object): |
| 33 | + def __init__(self, weights_file, classes_file): |
| 34 | + self.classes = load_json(classes_file) |
| 35 | + self.weights = np.load(weights_file, encoding='latin1').item() |
| 36 | + |
| 37 | + def vgg_addmean(self, images): |
| 38 | + mean = [103.939, 116.779, 123.68] |
| 39 | + img_trans = [] |
| 40 | + for img in images: |
| 41 | + blue, green, red = np.split(img, 3, 2) |
| 42 | + img_trans.append(np.concatenate( |
| 43 | + [blue + mean[0], green + mean[1], red + mean[2]], 2), |
| 44 | + ) |
| 45 | + return img_trans |
| 46 | + |
| 47 | + def load_image(self, image_file): |
| 48 | + image = cv2.imread(image_file) |
| 49 | + image = cv2.resize(image, (224, 224)) |
| 50 | + image = np.expand_dims(image, axis=0) |
| 51 | + return self.vgg_addmean(image) |
| 52 | + |
| 53 | + def build_model(self, batch_size, alpha): |
| 54 | + return Sequential([ |
| 55 | + Convolution(batch_size=batch_size, |
| 56 | + initializer=self.weights['conv1_1'], |
| 57 | + first=True, |
| 58 | + name='conv1_1_'), |
| 59 | + Convolution_ab( |
| 60 | + batch_size=batch_size, |
| 61 | + initializer=self.weights['conv1_2'], |
| 62 | + alpha=alpha, |
| 63 | + name='conv1_2_'), |
| 64 | + PropPool(name='PropPool1'), |
| 65 | + Convolution_ab( |
| 66 | + batch_size=batch_size, |
| 67 | + initializer=self.weights['conv2_1'], |
| 68 | + alpha=alpha, |
| 69 | + name='conv2_1_'), |
| 70 | + Convolution_ab( |
| 71 | + batch_size=batch_size, |
| 72 | + initializer=self.weights['conv2_2'], |
| 73 | + alpha=alpha, |
| 74 | + name='conv2_2_'), |
| 75 | + PropPool(name='PropPool2'), |
| 76 | + Convolution_ab( |
| 77 | + batch_size=batch_size, |
| 78 | + initializer=self.weights['conv3_1'], |
| 79 | + alpha=alpha, |
| 80 | + name='conv3_1_'), |
| 81 | + Convolution_ab( |
| 82 | + batch_size=batch_size, |
| 83 | + initializer=self.weights['conv3_2'], |
| 84 | + alpha=alpha, |
| 85 | + name='conv3_2_'), |
| 86 | + Convolution_ab( |
| 87 | + batch_size=batch_size, |
| 88 | + initializer=self.weights['conv3_3'], |
| 89 | + alpha=alpha, |
| 90 | + name='conv3_3_'), |
| 91 | + PropPool(name='PropPool3'), |
| 92 | + Convolution_ab( |
| 93 | + batch_size=batch_size, |
| 94 | + initializer=self.weights['conv4_1'], |
| 95 | + alpha=alpha, |
| 96 | + name='conv4_1_'), |
| 97 | + Convolution_ab( |
| 98 | + batch_size=batch_size, |
| 99 | + initializer=self.weights['conv4_2'], |
| 100 | + alpha=alpha, |
| 101 | + name='conv4_2_'), |
| 102 | + Convolution_ab( |
| 103 | + batch_size=batch_size, |
| 104 | + initializer=self.weights['conv4_3'], |
| 105 | + alpha=alpha, |
| 106 | + name='conv4_3_'), |
| 107 | + PropPool(name='PropPool4'), |
| 108 | + Convolution_ab( |
| 109 | + batch_size=batch_size, |
| 110 | + initializer=self.weights['conv5_1'], |
| 111 | + alpha=alpha, |
| 112 | + name='conv5_1_'), |
| 113 | + Convolution_ab( |
| 114 | + batch_size=batch_size, |
| 115 | + initializer=self.weights['conv5_2'], |
| 116 | + alpha=alpha, |
| 117 | + name='conv5_2_'), |
| 118 | + Convolution_ab( |
| 119 | + batch_size=batch_size, |
| 120 | + initializer=self.weights['conv5_3'], |
| 121 | + alpha=alpha, |
| 122 | + name='conv5_3_'), |
| 123 | + PropPool(name='PropPool5'), |
| 124 | + Reshape(name='flat1'), |
| 125 | + Linear(batch_size=batch_size, |
| 126 | + initializer=self.weights['fc6'], |
| 127 | + alpha=alpha, |
| 128 | + name='fc6_'), |
| 129 | + Linear(batch_size=batch_size, |
| 130 | + initializer=self.weights['fc7'], |
| 131 | + alpha=alpha, |
| 132 | + name='fc7_'), |
| 133 | + Linear(batch_size=batch_size, |
| 134 | + initializer=self.weights['fc8'], |
| 135 | + alpha=alpha, |
| 136 | + name='fc8_'), |
| 137 | + ]) |
0 commit comments