-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
185 lines (158 loc) · 5.84 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import pathlib
import numpy as np
import torch
from torch import nn
from torch.autograd import Variable
import torch.optim as optim
import torch.utils.data
def bool_to_idx(idx):
return idx.nonzero().squeeze(1)
def maybe_cuda_var(x, cuda):
"""Helper for converting to a Variable"""
x = Variable(x)
if cuda:
x = x.cuda()
return x
def train(config, model, data_manager, train_epoch, test_epoch):
optimizer = optim.Adam(model.parameters(), lr=config.learning_rate)
for epoch in range(1, config.num_epochs + 1):
train_data_loader = data_manager.create_dataloader(config)
test_data_loader = data_manager.create_dataloader(config, mode="test")
train_epoch(
epoch=epoch, config=config, model=model,
data_loader=train_data_loader,
optimizer=optimizer,
)
test_result = test_epoch(
config=config, model=model,
data_loader=test_data_loader,
)
print(
'Epoch: {}, Average loss: {:.4f}, '
'Accuracy: {}/{} ({:.0f}%), PT: {}'.format(
epoch,
test_result["loss"], test_result["num_correct"],
test_result["length"],
test_result["num_correct"] * 100 / test_result["length"],
f'{test_result["mean_ponder_time"]:.1f}'
if test_result["mean_ponder_time"] else "N/A",
)
)
if epoch % config.model_save_interval == 0:
model_save_path = pathlib.Path(config.model_save_path)
model_save_path.mkdir(exist_ok=True, parents=True)
model_save_file_path = (
model_save_path / f"epoch_{epoch}.pt"
)
print(f"Saving checkpoint to {model_save_file_path}")
torch.save(model.state_dict(), model_save_file_path)
def test_epoch(config, model, data_loader, epoch):
model.eval()
test_loss = 0
correct = 0
#loss_func = nn.BCEWithLogitsLoss(reduction="sum")
loss_func = nn.BCEWithLogitsLoss()
ponder_times_ls = []
for batch_idx, (x, y) in enumerate(data_loader):
x_var = maybe_cuda_var(x, cuda=config.cuda)
y_var = y
if config.cuda:
y_var = y_var.cuda()
y_hat, ponder_dict = model(x_var, compute_ponder_cost=False)
test_loss += loss_func(y_hat, y_var).item()
y_pred = (y_hat.data > 0.5).float()
correct += y_pred.eq(y_var.data).cpu().numpy()\
.reshape(y.shape[0], -1).all(axis=1).sum()
if ponder_dict:
ponder_times_ls.append(np.array(ponder_dict["ponder_times"]).T)
test_loss /= len(data_loader.dataset)
if ponder_times_ls:
mean_ponder_time = np.mean(np.vstack(ponder_times_ls))
else:
mean_ponder_time = None
print(
'Epoch: {}, Average loss: {:.4f}, '
'Accuracy: {}/{} ({:.0f}%), PT: {}'.format(
epoch,
test_loss, correct,
len(data_loader.dataset),
correct * 100 / len(data_loader.dataset),
f'{mean_ponder_time:.1f}'
if mean_ponder_time else "N/A",
)
)
if epoch % config.model_save_interval == 0:
model_save_path = pathlib.Path(config.model_save_path)
model_save_path.mkdir(exist_ok=True, parents=True)
model_save_file_path = (
model_save_path / f"epoch_{epoch}.pt"
)
print(f"Saving checkpoint to {model_save_file_path}")
torch.save(model.state_dict(), model_save_file_path)
return {
"loss": test_loss,
"num_correct": correct,
"length": len(data_loader.dataset),
"mean_ponder_time": mean_ponder_time,
}
class MultiDataset(torch.utils.data.Dataset):
def __init__(self, *data_list):
assert len(data_list) > 0
self.data_length = len(data_list[0])
for data in data_list[1:]:
assert len(data) == self.data_length
self.data_list = data_list
def __getitem__(self, index):
return [
data[index]
for data in self.data_list
]
def __len__(self):
return self.data_length
class DataManager:
@classmethod
def create_data(cls, *args, **kwargs):
#def create_data(self, *args, **kwargs):
raise NotImplementedError
@classmethod
def _get_length(cls, config):
raise NotImplementedError
@classmethod
def _get_dataloader(cls, data, batch_size):
#def _get_dataloader(self, data, batch_size):
data_x, data_y = data
return torch.utils.data.DataLoader(
MultiDataset(data_x, data_y),
batch_size=batch_size,
shuffle=True,
)
@classmethod
def create_dataloader(cls, config, mode="train"):
length = cls._get_length(config)
#@classmethod
#def create_dataloader(self, config, mode="train"):
length = cls._get_length(config)
input_length = config.input_length
if mode == "train":
pass
elif mode == "test":
length = int(config.test_percentage * length)
else:
raise KeyError(mode)
data = cls.create_data(length=length, input_length=input_length)
return cls._get_dataloader(data=data, batch_size=config.batch_size)
class ParityDataManager(DataManager):
@classmethod
def create_data(cls, length, input_length):
parity_x = np.random.randint(2, size=(length, input_length)).astype(
np.float32) * 2 - 1
zero_out = np.random.randint(1, input_length, size=length)
for i in range(length):
parity_x[i, zero_out[i]:] = 0.
parity_y = (np.sum(parity_x == 1, axis=1) % 2).astype(np.float32)
parity_x = np.expand_dims(parity_x, 1)
return parity_x, parity_y
@classmethod
def _get_length(cls,config):
return 16*10
#return config.parity_data_len