-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathconfig.py
executable file
·113 lines (92 loc) · 2.95 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# encoding: utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import os.path as osp
import sys
import time
import numpy as np
from easydict import EasyDict as edict
import argparse
C = edict()
config = C
cfg = C
C.seed = 12345
remoteip = os.popen('pwd').read()
C.volna = '/home/chen/RGBD_Semantic_Segmentation_PyTorch/' # this is the path to your repo 'RGBD_Semantic_Segmentation_PyTorch'
"""please config ROOT_dir and user when u first using"""
C.repo_name = 'RGBD_Semantic_Segmentation_PyTorch'
C.abs_dir = osp.realpath(".")
C.this_dir = C.abs_dir.split(osp.sep)[-1]
C.root_dir = C.abs_dir[:C.abs_dir.index(C.repo_name) + len(C.repo_name)]
C.log_dir = osp.abspath('log')
C.tb_dir = osp.abspath(osp.join(C.log_dir, "tb"))
C.log_dir_link = osp.join(C.abs_dir, 'log')
C.snapshot_dir = osp.abspath(osp.join(C.log_dir, "snapshot"))
exp_time = time.strftime('%Y_%m_%d_%H_%M_%S', time.localtime())
C.log_file = C.log_dir + '/log_' + exp_time + '.log'
C.link_log_file = C.log_file + '/log_last.log'
C.val_log_file = C.log_dir + '/val_' + exp_time + '.log'
C.link_val_log_file = C.log_dir + '/val_last.log'
"""Data Dir and Weight Dir"""
C.dataset_path = osp.join(C.volna, 'DATA/NYUDepthv2')
C.img_root_folder = C.dataset_path
C.gt_root_folder = C.dataset_path
C.hha_root_folder = osp.join(C.dataset_path, 'HHA')
C.train_source = osp.join(C.dataset_path, "train.txt")
C.eval_source = osp.join(C.dataset_path, "test.txt")
C.is_test = False
"""Path Config"""
def add_path(path):
if path not in sys.path:
sys.path.insert(0, path)
add_path(osp.join(C.root_dir, 'furnace'))
from utils.pyt_utils import model_urls
"""Image Config"""
C.num_classes = 40
C.background = 255
C.image_mean = np.array([0.485, 0.456, 0.406]) # 0.485, 0.456, 0.406
C.image_std = np.array([0.229, 0.224, 0.225])
C.image_height = 480
C.image_width = 480
C.num_train_imgs = 795
C.num_eval_imgs = 654
""" Settings for network, this would be different for each kind of model"""
C.fix_bias = True
C.bn_eps = 1e-5
C.bn_momentum = 0.1
C.pretrained_model = C.volna + 'DATA/pytorch-weight/resnet101_v1c.pth'
C.aux_rate = 0.2
"""Train Config"""
C.lr = 2e-2
C.lr_power = 0.9
C.momentum = 0.9
C.weight_decay = 5e-4
C.batch_size = 16
C.nepochs = 400
C.niters_per_epoch = 795 // C.batch_size * (800 // C.nepochs)
C.num_workers = 2
C.train_scale_array = [0.5, 0.75, 1, 1.25, 1.5, 1.75]
C.warm_up_epoch = 10
"""Eval Config"""
C.eval_iter = 30
C.eval_stride_rate = 2 / 3
C.eval_scale_array = [1] #[1, 0.75, 1.25]
C.eval_flip = False
C.eval_base_size = 480
C.eval_crop_size = 480
"""Display Config"""
C.snapshot_iter = 10
C.record_info_iter = 20
C.display_iter = 50
def open_tensorboard():
pass
if __name__ == '__main__':
print(config.nepochs)
parser = argparse.ArgumentParser()
parser.add_argument(
'-tb', '--tensorboard', default=False, action='store_true')
args = parser.parse_args()
if args.tensorboard:
open_tensorboard()