-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathworker_runpod.py
134 lines (121 loc) · 5.88 KB
/
worker_runpod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os, json, requests, random, time, shutil, runpod
import torch
from PIL import Image
import numpy as np
import nodes
from nodes import NODE_CLASS_MAPPINGS
from nodes import load_custom_node
import asyncio
import execution
import server
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
server_instance = server.PromptServer(loop)
execution.PromptQueue(server)
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-MochiWrapper")
load_custom_node("/content/ComfyUI/custom_nodes/ComfyUI-VideoHelperSuite")
CLIPLoader = NODE_CLASS_MAPPINGS["CLIPLoader"]()
DownloadAndLoadMochiModel = NODE_CLASS_MAPPINGS["DownloadAndLoadMochiModel"]()
MochiTextEncode = NODE_CLASS_MAPPINGS["MochiTextEncode"]()
MochiSampler = NODE_CLASS_MAPPINGS["MochiSampler"]()
MochiDecode = NODE_CLASS_MAPPINGS["MochiDecode"]()
VHS_VideoCombine = NODE_CLASS_MAPPINGS["VHS_VideoCombine"]()
with torch.inference_mode():
clip = CLIPLoader.load_clip('google_t5-v1_1-xxl_encoderonly-fp16.safetensors', type="sd3")[0]
model, vae = DownloadAndLoadMochiModel.loadmodel('mochi_preview_dit_bf16.safetensors', 'mochi_preview_vae_bf16.safetensors', 'bf16', 'flash_attn')
def closestNumber(n, m):
q = int(n / m)
n1 = m * q
if (n * m) > 0:
n2 = m * (q + 1)
else:
n2 = m * (q - 1)
if abs(n - n1) < abs(n - n2):
return n1
return n2
@torch.inference_mode()
def generate(input):
values = input["input"]
positive_prompt = values['positive_prompt']
negative_prompt = values['negative_prompt']
width = values['width']
height = values['height']
seed = values['seed']
steps = values['steps']
cfg = values['cfg']
num_frames = values['num_frames']
if seed == 0:
random.seed(int(time.time()))
seed = random.randint(0, 18446744073709551615)
print(seed)
positive = MochiTextEncode.process(clip, positive_prompt, strength=1.0, force_offload=True)[0]
negative = MochiTextEncode.process(clip, negative_prompt, strength=1.0, force_offload=True)[0]
samples = MochiSampler.process(model, positive, negative, steps, cfg, seed, height, width, num_frames)[0]
enable_vae_tiling = True
tile_sample_min_height = 160
tile_sample_min_width = 312
tile_overlap_factor_height = 0.25
tile_overlap_factor_width = 0.25
auto_tile_size = False
frame_batch_size = 10
frames = MochiDecode.decode(vae, samples, enable_vae_tiling, tile_sample_min_height, tile_sample_min_width, tile_overlap_factor_height, tile_overlap_factor_width, auto_tile_size, frame_batch_size)[0]
out_video = VHS_VideoCombine.combine_video(images=frames, frame_rate=24, loop_count=0, filename_prefix="Mochi", format="video/h264-mp4", save_output=True, prompt=None, unique_id=None)
source = out_video["result"][0][1][1]
destination = '/content/ComfyUI/output/mochi-1-preview-tost.mp4'
shutil.move(source, destination)
result = '/content/ComfyUI/output/mochi-1-preview-tost.mp4'
try:
notify_uri = values['notify_uri']
del values['notify_uri']
notify_token = values['notify_token']
del values['notify_token']
discord_id = values['discord_id']
del values['discord_id']
if(discord_id == "discord_id"):
discord_id = os.getenv('com_camenduru_discord_id')
discord_channel = values['discord_channel']
del values['discord_channel']
if(discord_channel == "discord_channel"):
discord_channel = os.getenv('com_camenduru_discord_channel')
discord_token = values['discord_token']
del values['discord_token']
if(discord_token == "discord_token"):
discord_token = os.getenv('com_camenduru_discord_token')
job_id = values['job_id']
del values['job_id']
default_filename = os.path.basename(result)
with open(result, "rb") as file:
files = {default_filename: file.read()}
payload = {"content": f"{json.dumps(values)} <@{discord_id}>"}
response = requests.post(
f"https://discord.com/api/v9/channels/{discord_channel}/messages",
data=payload,
headers={"Authorization": f"Bot {discord_token}"},
files=files
)
response.raise_for_status()
result_url = response.json()['attachments'][0]['url']
notify_payload = {"jobId": job_id, "result": result_url, "status": "DONE"}
web_notify_uri = os.getenv('com_camenduru_web_notify_uri')
web_notify_token = os.getenv('com_camenduru_web_notify_token')
if(notify_uri == "notify_uri"):
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
else:
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
requests.post(notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
return {"jobId": job_id, "result": result_url, "status": "DONE"}
except Exception as e:
error_payload = {"jobId": job_id, "status": "FAILED"}
try:
if(notify_uri == "notify_uri"):
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
else:
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
requests.post(notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
except:
pass
return {"jobId": job_id, "result": f"FAILED: {str(e)}", "status": "FAILED"}
finally:
if os.path.exists(result):
os.remove(result)
runpod.serverless.start({"handler": generate})