generated from donotdespair/presentation-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex-speaker.html
1198 lines (1088 loc) · 57.9 KB
/
index-speaker.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en"><head>
<script src="index_files/libs/clipboard/clipboard.min.js"></script>
<script src="index_files/libs/quarto-html/tabby.min.js"></script>
<script src="index_files/libs/quarto-html/popper.min.js"></script>
<script src="index_files/libs/quarto-html/tippy.umd.min.js"></script>
<link href="index_files/libs/quarto-html/tippy.css" rel="stylesheet">
<link href="index_files/libs/quarto-html/light-border.css" rel="stylesheet">
<link href="index_files/libs/quarto-html/quarto-html.min.css" rel="stylesheet" data-mode="light">
<link href="index_files/libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles"><meta charset="utf-8">
<meta name="generator" content="quarto-1.3.361">
<meta name="author" content="by Tomasz Woźniak">
<title>Bayesian Forecasting of Labour Market Indicators using the R package bvarPANELs</title>
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui">
<link rel="stylesheet" href="index_files/libs/revealjs/dist/reset.css">
<link rel="stylesheet" href="index_files/libs/revealjs/dist/reveal.css">
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
vertical-align: middle;
}
/* CSS for syntax highlighting */
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ color: #003b4f; background-color: #f1f3f5; }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span { color: #003b4f; } /* Normal */
code span.al { color: #ad0000; } /* Alert */
code span.an { color: #5e5e5e; } /* Annotation */
code span.at { color: #657422; } /* Attribute */
code span.bn { color: #ad0000; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #003b4f; } /* ControlFlow */
code span.ch { color: #20794d; } /* Char */
code span.cn { color: #8f5902; } /* Constant */
code span.co { color: #5e5e5e; } /* Comment */
code span.cv { color: #5e5e5e; font-style: italic; } /* CommentVar */
code span.do { color: #5e5e5e; font-style: italic; } /* Documentation */
code span.dt { color: #ad0000; } /* DataType */
code span.dv { color: #ad0000; } /* DecVal */
code span.er { color: #ad0000; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #ad0000; } /* Float */
code span.fu { color: #4758ab; } /* Function */
code span.im { color: #00769e; } /* Import */
code span.in { color: #5e5e5e; } /* Information */
code span.kw { color: #003b4f; } /* Keyword */
code span.op { color: #5e5e5e; } /* Operator */
code span.ot { color: #003b4f; } /* Other */
code span.pp { color: #ad0000; } /* Preprocessor */
code span.sc { color: #5e5e5e; } /* SpecialChar */
code span.ss { color: #20794d; } /* SpecialString */
code span.st { color: #20794d; } /* String */
code span.va { color: #111111; } /* Variable */
code span.vs { color: #20794d; } /* VerbatimString */
code span.wa { color: #5e5e5e; font-style: italic; } /* Warning */
</style>
<link rel="stylesheet" href="index_files/libs/revealjs/dist/theme/quarto.css">
<link href="index_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.css" rel="stylesheet">
<link href="index_files/libs/revealjs/plugin/reveal-menu/menu.css" rel="stylesheet">
<link href="index_files/libs/revealjs/plugin/reveal-menu/quarto-menu.css" rel="stylesheet">
<link href="index_files/libs/revealjs/plugin/quarto-support/footer.css" rel="stylesheet">
<style type="text/css">
.callout {
margin-top: 1em;
margin-bottom: 1em;
border-radius: .25rem;
}
.callout.callout-style-simple {
padding: 0em 0.5em;
border-left: solid #acacac .3rem;
border-right: solid 1px silver;
border-top: solid 1px silver;
border-bottom: solid 1px silver;
display: flex;
}
.callout.callout-style-default {
border-left: solid #acacac .3rem;
border-right: solid 1px silver;
border-top: solid 1px silver;
border-bottom: solid 1px silver;
}
.callout .callout-body-container {
flex-grow: 1;
}
.callout.callout-style-simple .callout-body {
font-size: 1rem;
font-weight: 400;
}
.callout.callout-style-default .callout-body {
font-size: 0.9rem;
font-weight: 400;
}
.callout.callout-titled.callout-style-simple .callout-body {
margin-top: 0.2em;
}
.callout:not(.callout-titled) .callout-body {
display: flex;
}
.callout:not(.no-icon).callout-titled.callout-style-simple .callout-content {
padding-left: 1.6em;
}
.callout.callout-titled .callout-header {
padding-top: 0.2em;
margin-bottom: -0.2em;
}
.callout.callout-titled .callout-title p {
margin-top: 0.5em;
margin-bottom: 0.5em;
}
.callout.callout-titled.callout-style-simple .callout-content p {
margin-top: 0;
}
.callout.callout-titled.callout-style-default .callout-content p {
margin-top: 0.7em;
}
.callout.callout-style-simple div.callout-title {
border-bottom: none;
font-size: .9rem;
font-weight: 600;
opacity: 75%;
}
.callout.callout-style-default div.callout-title {
border-bottom: none;
font-weight: 600;
opacity: 85%;
font-size: 0.9rem;
padding-left: 0.5em;
padding-right: 0.5em;
}
.callout.callout-style-default div.callout-content {
padding-left: 0.5em;
padding-right: 0.5em;
}
.callout.callout-style-simple .callout-icon::before {
height: 1rem;
width: 1rem;
display: inline-block;
content: "";
background-repeat: no-repeat;
background-size: 1rem 1rem;
}
.callout.callout-style-default .callout-icon::before {
height: 0.9rem;
width: 0.9rem;
display: inline-block;
content: "";
background-repeat: no-repeat;
background-size: 0.9rem 0.9rem;
}
.callout-title {
display: flex
}
.callout-icon::before {
margin-top: 1rem;
padding-right: .5rem;
}
.callout.no-icon::before {
display: none !important;
}
.callout.callout-titled .callout-body > .callout-content > :last-child {
margin-bottom: 0.5rem;
}
.callout.callout-titled .callout-icon::before {
margin-top: .5rem;
padding-right: .5rem;
}
.callout:not(.callout-titled) .callout-icon::before {
margin-top: 1rem;
padding-right: .5rem;
}
/* Callout Types */
div.callout-note {
border-left-color: #4582ec !important;
}
div.callout-note .callout-icon::before {
background-image: url('');
}
div.callout-note.callout-style-default .callout-title {
background-color: #dae6fb
}
div.callout-important {
border-left-color: #d9534f !important;
}
div.callout-important .callout-icon::before {
background-image: url('');
}
div.callout-important.callout-style-default .callout-title {
background-color: #f7dddc
}
div.callout-warning {
border-left-color: #f0ad4e !important;
}
div.callout-warning .callout-icon::before {
background-image: url('');
}
div.callout-warning.callout-style-default .callout-title {
background-color: #fcefdc
}
div.callout-tip {
border-left-color: #02b875 !important;
}
div.callout-tip .callout-icon::before {
background-image: url('');
}
div.callout-tip.callout-style-default .callout-title {
background-color: #ccf1e3
}
div.callout-caution {
border-left-color: #fd7e14 !important;
}
div.callout-caution .callout-icon::before {
background-image: url('');
}
div.callout-caution.callout-style-default .callout-title {
background-color: #ffe5d0
}
</style>
<style type="text/css">
.reveal div.sourceCode {
margin: 0;
overflow: auto;
}
.reveal div.hanging-indent {
margin-left: 1em;
text-indent: -1em;
}
.reveal .slide:not(.center) {
height: 100%;
}
.reveal .slide.scrollable {
overflow-y: auto;
}
.reveal .footnotes {
height: 100%;
overflow-y: auto;
}
.reveal .slide .absolute {
position: absolute;
display: block;
}
.reveal .footnotes ol {
counter-reset: ol;
list-style-type: none;
margin-left: 0;
}
.reveal .footnotes ol li:before {
counter-increment: ol;
content: counter(ol) ". ";
}
.reveal .footnotes ol li > p:first-child {
display: inline-block;
}
.reveal .slide ul,
.reveal .slide ol {
margin-bottom: 0.5em;
}
.reveal .slide ul li,
.reveal .slide ol li {
margin-top: 0.4em;
margin-bottom: 0.2em;
}
.reveal .slide ul[role="tablist"] li {
margin-bottom: 0;
}
.reveal .slide ul li > *:first-child,
.reveal .slide ol li > *:first-child {
margin-block-start: 0;
}
.reveal .slide ul li > *:last-child,
.reveal .slide ol li > *:last-child {
margin-block-end: 0;
}
.reveal .slide .columns:nth-child(3) {
margin-block-start: 0.8em;
}
.reveal blockquote {
box-shadow: none;
}
.reveal .tippy-content>* {
margin-top: 0.2em;
margin-bottom: 0.7em;
}
.reveal .tippy-content>*:last-child {
margin-bottom: 0.2em;
}
.reveal .slide > img.stretch.quarto-figure-center,
.reveal .slide > img.r-stretch.quarto-figure-center {
display: block;
margin-left: auto;
margin-right: auto;
}
.reveal .slide > img.stretch.quarto-figure-left,
.reveal .slide > img.r-stretch.quarto-figure-left {
display: block;
margin-left: 0;
margin-right: auto;
}
.reveal .slide > img.stretch.quarto-figure-right,
.reveal .slide > img.r-stretch.quarto-figure-right {
display: block;
margin-left: auto;
margin-right: 0;
}
</style>
</head>
<body class="quarto-light">
<div class="reveal">
<div class="slides">
<section id="title-slide" data-background-color="#1614B1" class="quarto-title-block center">
<h1 class="title"><span style="color: #1A003F;">Bayesian Forecasting of Labour Market Indicators using the R package <a href="https://github.com/bsvars/bvarPANELs">bvarPANELs</a></span></h1>
<div class="quarto-title-authors">
<div class="quarto-title-author">
<div class="quarto-title-author-name">
by Tomasz Woźniak
</div>
</div>
</div>
</section>
<section id="section" class="slide level2" data-background-color="#1614B1">
<h2></h2>
<img data-src="bvarPANELs.png" class="r-stretch quarto-figure-center"></section>
<section id="coming-up-next" class="slide level2" data-background-color="#1614B1">
<h2>Coming up next</h2>
<p><span class="math display">\[ \]</span></p>
<h3 style="color:#1A003F;" id="modelling-and-forecasting-framework">modelling and forecasting framework</h3>
<h3 style="color:#1A003F;" id="the-r-package-bvarpanels">the R package <a href="https://github.com/bsvars/bvarPANELs">bvarPANELs</a></h3>
<!-- ### roadmap {style="color:#1A003F;"} -->
</section>
<section id="materials" class="slide level2" data-background-color="#1614B1">
<h2>Materials</h2>
<p><span class="math display">\[ \]</span></p>
<h3 style="color:#1A003F;" id="lecture-slides-as-a-website">Lecture Slides <a href="https://bsvars.org/2025-03-bvarPANELs-ilo/">as a website</a></h3>
<h3 style="color:#1A003F;" id="r-script-for-the-easy-results-reproduction"><a href="https://github.com/bsvars/2025-03-bvarPANELs-ilo/blob/master/bvarPANELs-ilo.R">R script</a> for the easy results reproduction</h3>
<h3 style="color:#1A003F;" id="github-repo-to-reproduce-the-slides-and-results">GitHub <a href="https://github.com/bsvars/2025-03-bvarPANELs-ilo">repo</a> to reproduce the slides and results</h3>
<h3 id="bvarpanels-package-repo"><a href="https://github.com/bsvars/bvarPANELs">bvarPANELs package repo</a></h3>
<h3 style="color:#1A003F;" id="bvarpanels-package-website"><a href="https://github.com/bsvars/bvarPANELs">bvarPANELs</a> package <a href="https://bsvars.org/bvarPANELs/">website</a></h3>
</section>
<section id="modelling-and-forecasting-framework-1" class="slide level2" data-background-color="#1614B1">
<h2>modelling and forecasting framework</h2>
</section>
<section id="modelling-and-forecasting-framework-2" class="slide level2">
<h2>modelling and forecasting framework</h2>
<h3 style="color:#1A003F;" id="characterisation">characterisation</h3>
<ul>
<li>contemporary Bayesian modelling and institutional setup</li>
<li>incorporates best knowledge and practices</li>
<li>a balance between model size, flexibility, and its capacity to extract signal from data</li>
<li>highly computational, application-specific modelling</li>
<li>inspirations: UN, IPCC, ECB, FED, Christopher Sims</li>
</ul>
<div class="footer">
<p><a href="https://bsvars.org/2025-03-bvarPANELs-ilo/">Forecasting with Bayesian Panel VARs</a></p>
</div>
</section>
<section id="modelling-and-forecasting-framework-3" class="slide level2">
<h2>modelling and forecasting framework</h2>
<h3 style="color:#1A003F;" id="modelling-features">modelling features</h3>
<ul>
<li>Bayesian nonstationary variables handling</li>
<li>system modelling</li>
<li>dynamic approach</li>
<li>global–to–local formulation</li>
<li>embedded flexibility</li>
<li>parameter estimation risk accountability</li>
</ul>
<div class="footer">
<p><a href="https://bsvars.org/2025-03-bvarPANELs-ilo/">Forecasting with Bayesian Panel VARs</a></p>
</div>
</section>
<section id="modelling-and-forecasting-framework-4" class="slide level2">
<h2>modelling and forecasting framework</h2>
<h3 style="color:#1A003F;" id="forecasting-features">forecasting features</h3>
<ul>
<li>original non-stationary variables</li>
<li>density forecasting</li>
<li>conditional forecasting given <span class="math inline">\(gdp\)</span> projections</li>
<li>forecasting for models with exogenous variables</li>
<li>restricted forecasting of rates</li>
</ul>
<div class="footer">
<p><a href="https://bsvars.org/2025-03-bvarPANELs-ilo/">Forecasting with Bayesian Panel VARs</a></p>
</div>
</section>
<section id="the-model" class="slide level2">
<h2>the model</h2>
<h3 style="color:#1A003F;" id="bayesian-hierarchical-panel-var">Bayesian hierarchical panel VAR</h3>
<ul>
<li>country-specific vector autoregression</li>
<li>panel modelling: global model for prior mean</li>
<li>flexible 3-level hierarchical prior structure</li>
<li>density forecasting</li>
</ul>
<div class="footer">
<p><a href="https://bsvars.org/2025-03-bvarPANELs-ilo/">Forecasting with Bayesian Panel VARs</a></p>
</div>
</section>
<section id="the-model-1" class="slide level2">
<h2>the model</h2>
<h3 style="color:#1A003F;" id="country-specific-vector-autoregression">country-specific vector autoregression</h3>
<p><span class="math display">\[\begin{align}
&\\
\mathbf{y}_{c.t} &= \begin{bmatrix} gdp_{c.t} & UR_{c.t} & EPR_{c.t} & LFPR_{c.t} \end{bmatrix}'\\[3ex]
\mathbf{y}_{c.t} &= \mathbf{A}_{c.1} \mathbf{y}_{c.t-1} + \mathbf{A}_{d.c}\mathbf{x}_{c.t} + \boldsymbol\epsilon_{c.t}\\[1ex]
\boldsymbol\epsilon_{c.t}\mid \mathbf{y}_{c.t-1} & \sim N_4\left(\mathbf{0}_4, \boldsymbol\Sigma_c\right)\\[2ex]
\end{align}\]</span></p>
<ul>
<li>subscript <span class="math inline">\(c\)</span> is for country, and <span class="math inline">\(t\)</span> is for time</li>
</ul>
<div class="footer">
<p><a href="https://bsvars.org/2025-03-bvarPANELs-ilo/">Forecasting with Bayesian Panel VARs</a></p>
</div>
</section>
<section id="the-model-2" class="slide level2">
<h2>the model</h2>
<h3 style="color:#1A003F;" id="global-model-for-the-prior-mean">global model for the prior mean</h3>
<p><span class="math display">\[\begin{align}
&\\
E_\pi\left[\mathbf{A}_{c}\right] &= \mathbf{A}, \qquad \mathbf{A}_{c} = \begin{bmatrix} \mathbf{A}_{c.1} & \mathbf{A}_{d.c} \end{bmatrix}'\\[1ex]
E_\pi\left[\boldsymbol\Sigma_c\right] &= \boldsymbol\Sigma\\[3ex]
\mathbf{y}_{c.t} &= \mathbf{A}_{1} \mathbf{y}_{c.t-1} + \mathbf{A}_{d}\mathbf{x}_{c.t} + \boldsymbol\epsilon_{c.t}\\[1ex]
\boldsymbol\epsilon_{c.t}\mid \mathbf{y}_{c.t-1} & \sim N_4\left(\mathbf{0}_4, \boldsymbol\Sigma\right)
\end{align}\]</span></p>
<div class="footer">
<p><a href="https://bsvars.org/2025-03-bvarPANELs-ilo/">Forecasting with Bayesian Panel VARs</a></p>
</div>
</section>
<section id="the-model-3" class="slide level2">
<h2>the model</h2>
<h3 style="color:#1A003F;" id="flexible-3-level-hierarchical-prior-structure">flexible 3-level hierarchical prior structure</h3>
<ul>
<li>estimate country-specific parameters: <span class="math inline">\(\mathbf{A}_c\)</span> and <span class="math inline">\(\mathbf{\Sigma}_c\)</span></li>
<li>estimate global parameters: <span class="math inline">\(\mathbf{A}\)</span> and <span class="math inline">\(\mathbf{\Sigma}\)</span></li>
<li>estimate other prior means and shrinkage levels</li>
</ul>
<h3 style="color:#1A003F;" id="advantages">advantages</h3>
<ul>
<li>flexible modelling for various types of data</li>
<li>improved forecasting performance</li>
<li>robustness to different prior specifications</li>
<li>convenient estimation using the Gibbs sampler</li>
</ul>
<div class="footer">
<p><a href="https://bsvars.org/2025-03-bvarPANELs-ilo/">Forecasting with Bayesian Panel VARs</a></p>
</div>
</section>
<section id="the-model-4" class="slide level2">
<h2>the model</h2>
<h3 style="color:#1A003F;" id="the-local-global-prior">the local-global prior</h3>
<p><span class="math display">\[\begin{align}
&\\
\mathbf{A}_c, \boldsymbol\Sigma_c | \mathbf{A}, \mathbf{V}, \mathbf{\Sigma}, \nu &\sim MNIW_{K\times N}\left(\mathbf{A}, \mathbf{V}, (N - \nu - 1)\mathbf{\Sigma}, \nu\right)\\[2ex]
\mathbf{A}', \mathbf{V} \mid m, w, s &\sim MNIW_{N\times K}\left(m\underline{\mathbf{M}}', w\underline{\mathbf{W}}, s\underline{\mathbf{S}}, \underline{\eta}\right)\label{eq:pgA}\\[2ex]
\mathbf{\Sigma}\mid s &\sim W_{N}\left(s\underline{\mathbf{S}}_\Sigma,\underline{\mu}_\Sigma\right)\\[3ex]
\end{align}\]</span></p>
<ul>
<li><span class="math inline">\(MNIW\)</span> is the matrix normal-inverse Wishart distribution (see <a href="https://doi.org/10.1111/1467-8462.12179">Woźniak (2016)</a>)</li>
<li><span class="math inline">\(W\)</span> is the Wishart distribution</li>
</ul>
<div class="footer">
<p><a href="https://bsvars.org/2025-03-bvarPANELs-ilo/">Forecasting with Bayesian Panel VARs</a></p>
</div>
</section>
<section id="the-model-5" class="slide level2">
<h2>the model</h2>
<h3 style="color:#1A003F;" id="hierarchical-prior">hierarchical prior</h3>
<p><span class="math display">\[\begin{align}
&\\
\nu &\sim\exp\left(\underline\lambda\right)\\[1ex]
m &\sim N\left(\underline{\mu}_m, \underline{\sigma}_m^2\right)\\[1ex]
w &\sim G\left(\underline{s}_w, \underline{a}_w\right)\\[1ex]
s &\sim IG2\left(\underline{s}_s, \underline{\nu}_s\right)\\[3ex]
\end{align}\]</span></p>
<ul>
<li><span class="math inline">\(IG2\)</span> is the inverted gamma 2 distribution</li>
</ul>
<div class="footer">
<p><a href="https://bsvars.org/2025-03-bvarPANELs-ilo/">Forecasting with Bayesian Panel VARs</a></p>
</div>
</section>
<section id="forecasting" class="slide level2">
<h2>forecasting</h2>
<h3 style="color:#1A003F;" id="one-period-ahead-predictive-density">one-period-ahead predictive density</h3>
<p><span class="math display">\[\begin{align}
&\\
{\color{lig}p\left(\mathbf{y}_{c.t+1}\mid \mathbf{y}_{c.t},\mathbf{A}_{c},\boldsymbol\Sigma_c\right)} & = N_4\left(\mathbf{A}_{c.1} \mathbf{y}_{c.t} + \mathbf{A}_{d.c}\mathbf{x}_{c.t+1}, \boldsymbol\Sigma_c\right)\\[5ex]
\end{align}\]</span></p>
<ul>
<li>is implied by the model</li>
<li>is the same as frequentist predictive density</li>
</ul>
<div class="footer">
<p><a href="https://bsvars.org/2025-03-bvarPANELs-ilo/">Forecasting with Bayesian Panel VARs</a></p>
</div>
</section>
<section id="forecasting-1" class="slide level2">
<h2>forecasting</h2>
<h3 style="color:#1A003F;" id="predictive-density">predictive density</h3>
<p><span class="math display">\[\begin{align}
p\left(\mathbf{y}_{c.t+h},\dots,\mathbf{y}_{c.t+1}\mid \mathbf{Y}_{c.t}\right)
&= \int p\left(\mathbf{y}_{c.t+h},\dots,\mathbf{y}_{c.t+1},\mathbf{A}_{c},\boldsymbol\Sigma_c\mid \mathbf{Y}_{c.t}\right)d\left(\mathbf{A}_{c},\boldsymbol\Sigma_c\right)\\[1ex]
&= \int{\color{lig} p\left(\mathbf{y}_{c.t+h}\mid \mathbf{y}_{c.t+h-1},\mathbf{A}_{c},\boldsymbol\Sigma_c\right)}\\[1ex]
&\qquad\times\dots\\[1ex]
&\qquad\times {\color{lig}p\left(\mathbf{y}_{c.t+1}\mid \mathbf{y}_{c.t},\mathbf{A}_{c},\boldsymbol\Sigma_c\right)}\\[1ex]
&\qquad\times p\left(\mathbf{A}_{c},\boldsymbol\Sigma_c\mid \mathbf{Y}_{c.t}\right)d\left(\mathbf{A}_{c},\boldsymbol\Sigma_c\right)
\end{align}\]</span></p>
<ul>
<li>conditional density structure determines the sampling algorithm</li>
</ul>
<div class="footer">
<p><a href="https://bsvars.org/2025-03-bvarPANELs-ilo/">Forecasting with Bayesian Panel VARs</a></p>
</div>
</section>
<section id="the-r-package-bvarpanels-1" class="slide level2" data-background-color="#1614B1">
<h2>the R package <a href="https://github.com/bsvars/bvarPANELs">bvarPANELs</a></h2>
</section>
<section id="the-r-package-bvarpanels-2" class="slide level2">
<h2>the R package <a href="https://github.com/bsvars/bvarPANELs">bvarPANELs</a></h2>
<h3 style="color:#1A003F;" id="features">features</h3>
<ul>
<li>precise estimation and forecasting</li>
<li>simple workflows in <strong>R</strong></li>
<li>excellent computational speed
<ul>
<li>frontier econometric and numerical techniques</li>
<li>algorithms written in <strong>C++</strong></li>
</ul></li>
<li>extensive documentation</li>
<li>up-to standards: ready for publication</li>
<li>install the package from the <a href="https://github.com/bsvars/bvarPANELs">GitHub repo</a></li>
</ul>
<pre><code>devtools::install_github("bsvars/bvarPANELs")</code></pre>
<div class="footer">
<p><a href="https://bsvars.org/2025-03-bvarPANELs-ilo/">Forecasting with Bayesian Panel VARs</a></p>
</div>
</section>
<section id="the-r-package-bvarpanels-3" class="slide level2">
<h2>the R package <a href="https://github.com/bsvars/bvarPANELs">bvarPANELs</a></h2>
<p><img data-src="grph_package.png" class="absolute" style="top: 100px; right: 250px; width: 600px; "></p>
<div class="footer">
<p><a href="https://bsvars.org/2025-03-bvarPANELs-ilo/">Forecasting with Bayesian Panel VARs</a></p>
</div>
</section>
<section id="the-r-package-bvarpanels-4" class="slide level2">
<h2>the R package <a href="https://github.com/bsvars/bvarPANELs">bvarPANELs</a></h2>
<p><img data-src="grph_paper.png" class="absolute" style="top: 100px; right: 250px; width: 600px; "></p>
<div class="footer">
<p><a href="https://bsvars.org/2025-03-bvarPANELs-ilo/">Forecasting with Bayesian Panel VARs</a></p>
</div>
</section>
<section id="the-r-package-bvarpanels-5" class="slide level2">
<h2>the R package <a href="https://github.com/bsvars/bvarPANELs">bvarPANELs</a></h2>
<h3 style="color:#1A003F;" id="load-data">load data</h3>
<div class="cell" data-hash="index_cache/revealjs/data_59ca3ffe8d8c537f3d881190d847f9bc">
<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode numberSource r number-lines code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1"></a><span class="fu">library</span>(bvarPANELs) <span class="co"># load the package</span></span>
<span id="cb2-2"><a href="#cb2-2"></a><span class="fu">data</span>(ilo_dynamic_panel) <span class="co"># load the data</span></span>
<span id="cb2-3"><a href="#cb2-3"></a>ilo_dynamic_panel<span class="sc">$</span>COL <span class="co"># show the data for Colombia</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>Time Series:
Start = 1991
End = 2023
Frequency = 1
gdp UR EPR LFPR
1991 25.53464 10.120000 59.96793 66.71999
1992 25.57429 9.440000 60.61868 66.93758
1993 25.62675 7.800000 62.04586 67.29486
1994 25.68326 8.250000 62.11328 67.69840
1995 25.73398 8.720000 62.11020 68.04361
1996 25.75433 11.810000 60.03138 68.07051
1997 25.78805 12.139999 59.96012 68.24507
1998 25.79374 15.000000 57.90753 68.12650
1999 25.75079 20.059999 53.95368 67.49272
2000 25.77962 20.520000 53.75205 67.62965
2001 25.79626 15.040001 57.46694 67.64000
2002 25.82099 14.481000 56.95565 66.60000
2003 25.85942 13.220999 58.52376 67.44000
2004 25.91138 13.717001 57.54213 66.69000
2005 25.95854 11.061999 58.11209 65.34000
2006 26.02355 11.091076 57.45149 64.61836
2007 26.08876 11.204000 56.73176 63.89000
2008 26.12106 11.273000 56.92724 64.16000
2009 26.13240 12.066000 58.87181 66.95000
2010 26.17636 11.153000 59.59857 67.08000
2011 26.24353 10.288000 60.56457 67.51000
2012 26.28191 9.959000 61.29091 68.07000
2013 26.33198 9.246000 61.05022 67.27000
2014 26.37599 8.799000 61.09555 66.99000
2015 26.40512 8.572000 61.27505 67.02000
2016 26.42578 8.922000 60.49401 66.42000
2017 26.43928 9.086000 60.01233 66.01000
2018 26.46460 9.360000 59.13354 65.24000
2019 26.49597 10.280000 57.70790 64.32000
2020 26.42140 15.983000 53.28358 63.42000
2021 26.52396 13.897999 55.38942 64.33000
2022 26.59432 10.547000 56.49851 63.16000
2023 26.60042 9.565347 57.65713 63.75558</code></pre>
</div>
</div>
<div class="footer">
<p><a href="https://bsvars.org/2025-03-bvarPANELs-ilo/">Forecasting with Bayesian Panel VARs</a></p>
</div>
</section>
<section id="the-r-package-bvarpanels-6" class="slide level2">
<h2>the R package <a href="https://github.com/bsvars/bvarPANELs">bvarPANELs</a></h2>
<h3 style="color:#1A003F;" id="specify-and-estimate-the-model">specify and estimate the model</h3>
<div class="cell" data-hash="index_cache/revealjs/spec_f706070f1741f422ad188c8ea6a84f45">
<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode numberSource r number-lines code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1"></a>spec <span class="ot">=</span> specify_bvarPANEL<span class="sc">$</span><span class="fu">new</span>( <span class="co"># specify the model</span></span>
<span id="cb4-2"><a href="#cb4-2"></a> ilo_dynamic_panel, <span class="co"># data</span></span>
<span id="cb4-3"><a href="#cb4-3"></a> <span class="at">exogenous =</span> ilo_exogenous_variables, <span class="co"># exogenous variables</span></span>
<span id="cb4-4"><a href="#cb4-4"></a> <span class="at">stationary =</span> <span class="fu">c</span>(<span class="cn">FALSE</span>, <span class="cn">FALSE</span>, <span class="cn">FALSE</span>, <span class="cn">TRUE</span>), <span class="co"># stationarity (determines prior mean)</span></span>
<span id="cb4-5"><a href="#cb4-5"></a> <span class="at">type =</span> <span class="fu">c</span>(<span class="st">"real"</span>, <span class="st">"rate"</span>, <span class="st">"rate"</span>, <span class="st">"rate"</span>) <span class="co"># variable types</span></span>
<span id="cb4-6"><a href="#cb4-6"></a>)</span>
<span id="cb4-7"><a href="#cb4-7"></a></span>
<span id="cb4-8"><a href="#cb4-8"></a>burn <span class="ot">=</span> <span class="fu">estimate</span>(spec, <span class="at">S =</span> <span class="dv">10000</span>, <span class="at">show_progress =</span> <span class="cn">FALSE</span>) <span class="co"># run the burn-in</span></span>
<span id="cb4-9"><a href="#cb4-9"></a>post <span class="ot">=</span> <span class="fu">estimate</span>(burn, <span class="at">S =</span> <span class="dv">10000</span>) <span class="co"># estimate the model</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>**************************************************|
bvarPANELs: Forecasting with Bayesian Hierarchical|
Panel Vector Autoregressions |
**************************************************|
Progress of the MCMC simulation for 10000 draws
Every draw is saved via MCMC thinning
Press Esc to interrupt the computations
**************************************************|</code></pre>
</div>
</div>
<div class="footer">
<p><a href="https://bsvars.org/2025-03-bvarPANELs-ilo/">Forecasting with Bayesian Panel VARs</a></p>
</div>
</section>
<section id="the-r-package-bvarpanels-7" class="slide level2">
<h2>the R package <a href="https://github.com/bsvars/bvarPANELs">bvarPANELs</a></h2>
<h3 style="color:#1A003F;" id="forecast-labour-market-outcomes">forecast labour market outcomes</h3>
<div class="cell" data-hash="index_cache/revealjs/for_73d1d1b189a7d4e6ffad9311a50355fc">
<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode numberSource r number-lines code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1"></a>fore <span class="ot">=</span> <span class="fu">forecast</span>( <span class="co"># forecast the model </span></span>
<span id="cb6-2"><a href="#cb6-2"></a> post, <span class="co"># estimation output</span></span>
<span id="cb6-3"><a href="#cb6-3"></a> <span class="at">horizon =</span> <span class="dv">6</span>, <span class="co"># forecast horizon</span></span>
<span id="cb6-4"><a href="#cb6-4"></a> <span class="at">exogenous_forecast =</span> ilo_exogenous_forecasts, <span class="co"># forecasts for exogenous variables</span></span>
<span id="cb6-5"><a href="#cb6-5"></a> <span class="at">conditional_forecast =</span> ilo_conditional_forecasts <span class="co"># gdp projections</span></span>
<span id="cb6-6"><a href="#cb6-6"></a>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>**************************************************|
bvarPANELs: Forecasting with Bayesian Hierarchical|
Panel Vector Autoregressions |
**************************************************|
Progress of sampling 10000 draws from
the predictive density for 189 countries
Press Esc to interrupt the computations
**************************************************|</code></pre>
</div>
</div>
<div class="footer">
<p><a href="https://bsvars.org/2025-03-bvarPANELs-ilo/">Forecasting with Bayesian Panel VARs</a></p>
</div>
</section>
<section id="the-r-package-bvarpanels-8" class="slide level2">
<h2>the R package <a href="https://github.com/bsvars/bvarPANELs">bvarPANELs</a></h2>
<h3 style="color:#1A003F;" id="forecast-labour-market-outcomes-1">forecast labour market outcomes</h3>
<div class="cell" data-hash="index_cache/revealjs/fore_plot_ad50257bcbbf8eecca393949849a69dd">
<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode numberSource r number-lines code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1"></a><span class="fu">plot</span>(fore, <span class="st">"COL"</span>, <span class="at">main =</span> <span class="st">"Forecasts for Colombia"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<img data-src="index_files/figure-revealjs/fore_plot-1.png" width="960" class="r-stretch"><div class="footer">
<p><a href="https://bsvars.org/2025-03-bvarPANELs-ilo/">Forecasting with Bayesian Panel VARs</a></p>
</div>
</section>
<section id="the-r-package-bvarpanels-9" class="slide level2">
<h2>the R package <a href="https://github.com/bsvars/bvarPANELs">bvarPANELs</a></h2>
<h3 style="color:#1A003F;" id="forecast-labour-market-outcomes-2">forecast labour market outcomes</h3>
<div class="cell" data-hash="index_cache/revealjs/fore_summary_65ce9a74c48cb5a9edd3ae0bbf76442b">
<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode numberSource r number-lines code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1"></a><span class="fu">summary</span>(fore, <span class="st">"COL"</span>)<span class="sc">$</span>variable2</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code> **************************************************|
bsvars: Bayesian Structural Vector Autoregressions|
**************************************************|
Posterior summary of forecasts |
**************************************************|</code></pre>
</div>
<div class="cell-output cell-output-stdout">
<pre><code> mean sd 5% quantile 95% quantile
1 10.294857 1.476505 7.872032 12.70846
2 9.841204 1.955355 6.707715 13.01481
3 9.270488 2.261769 5.611791 12.99134
4 8.846041 2.524810 4.745539 13.01309
5 8.492730 2.729845 4.030065 12.93011
6 8.222295 2.887869 3.420855 12.95301</code></pre>
</div>
</div>
<div class="footer">
<p><a href="https://bsvars.org/2025-03-bvarPANELs-ilo/">Forecasting with Bayesian Panel VARs</a></p>
</div>
</section>
<section id="the-r-package-bvarpanels-10" class="slide level2">
<h2>the R package <a href="https://github.com/bsvars/bvarPANELs">bvarPANELs</a></h2>
<h3 style="color:#1A003F;" id="forecast-error-variance-decomposition">forecast error variance decomposition</h3>
<div class="cell" data-hash="index_cache/revealjs/fevd_cf822ba2d57f63b51bdc22db63f53f29">
<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode numberSource r number-lines code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1"></a>post <span class="sc">|></span> <span class="co"># estimation output</span></span>
<span id="cb12-2"><a href="#cb12-2"></a> <span class="fu">compute_variance_decompositions</span>(<span class="at">horizon =</span> <span class="dv">6</span>) <span class="sc">|></span> <span class="co"># compute variance decompositions</span></span>
<span id="cb12-3"><a href="#cb12-3"></a> <span class="fu">plot</span>(<span class="at">which_c =</span> <span class="st">"COL"</span>) <span class="co"># plot variance decompositions</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<img data-src="index_files/figure-revealjs/fevd-1.png" width="960" class="r-stretch"><div class="footer">
<p><a href="https://bsvars.org/2025-03-bvarPANELs-ilo/">Forecasting with Bayesian Panel VARs</a></p>
</div>
</section>
<section id="section-1" class="slide level2" data-background-color="#1614B1">
<h2></h2>
<p><img data-src="social_ilo.png" class="absolute" style="top: 80px; right: 50px; width: 900px; "></p>
<div class="footer footer-default">
</div>
</section>
</div>
</div>
<script>window.backupDefine = window.define; window.define = undefined;</script>
<script src="index_files/libs/revealjs/dist/reveal.js"></script>
<!-- reveal.js plugins -->
<script src="index_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.js"></script>
<script src="index_files/libs/revealjs/plugin/pdf-export/pdfexport.js"></script>
<script src="index_files/libs/revealjs/plugin/reveal-menu/menu.js"></script>
<script src="index_files/libs/revealjs/plugin/reveal-menu/quarto-menu.js"></script>
<script src="index_files/libs/revealjs/plugin/multiplex/socket.io.js"></script>
<script src="index_files/libs/revealjs/plugin/multiplex/multiplex.js"></script>
<script src="index_files/libs/revealjs/plugin/quarto-support/support.js"></script>
<script src="index_files/libs/revealjs/plugin/notes/notes.js"></script>
<script src="index_files/libs/revealjs/plugin/search/search.js"></script>
<script src="index_files/libs/revealjs/plugin/zoom/zoom.js"></script>
<script src="index_files/libs/revealjs/plugin/math/math.js"></script>
<script>window.define = window.backupDefine; window.backupDefine = undefined;</script>
<script>
// Full list of configuration options available at:
// https://revealjs.com/config/
Reveal.initialize({
'controlsAuto': true,
'previewLinksAuto': false,
'smaller': true,
'pdfSeparateFragments': false,
'autoAnimateEasing': "ease",
'autoAnimateDuration': 1,
'autoAnimateUnmatched': true,
'menu': {"side":"left","useTextContentForMissingTitles":true,"markers":false,"loadIcons":false,"custom":[{"title":"Tools","icon":"<i class=\"fas fa-gear\"></i>","content":"<ul class=\"slide-menu-items\">\n<li class=\"slide-tool-item active\" data-item=\"0\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.fullscreen(event)\"><kbd>f</kbd> Fullscreen</a></li>\n<li class=\"slide-tool-item\" data-item=\"1\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.speakerMode(event)\"><kbd>s</kbd> Speaker View</a></li>\n<li class=\"slide-tool-item\" data-item=\"2\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.overview(event)\"><kbd>o</kbd> Slide Overview</a></li>\n<li class=\"slide-tool-item\" data-item=\"3\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.togglePdfExport(event)\"><kbd>e</kbd> PDF Export Mode</a></li>\n<li class=\"slide-tool-item\" data-item=\"4\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.keyboardHelp(event)\"><kbd>?</kbd> Keyboard Help</a></li>\n</ul>"}],"openButton":true},
'multiplex': {"secret":"17333575797831503180","id":"7240319ecca8f17e","url":"https://reveal-multiplex.glitch.me/"},
'smaller': true,
// Display controls in the bottom right corner
controls: false,
// Help the user learn the controls by providing hints, for example by
// bouncing the down arrow when they first encounter a vertical slide
controlsTutorial: false,
// Determines where controls appear, "edges" or "bottom-right"
controlsLayout: 'edges',
// Visibility rule for backwards navigation arrows; "faded", "hidden"
// or "visible"
controlsBackArrows: 'faded',
// Display a presentation progress bar
progress: true,
// Display the page number of the current slide
slideNumber: 'c',
// 'all', 'print', or 'speaker'
showSlideNumber: 'all',
// Add the current slide number to the URL hash so that reloading the
// page/copying the URL will return you to the same slide
hash: true,
// Start with 1 for the hash rather than 0
hashOneBasedIndex: false,
// Flags if we should monitor the hash and change slides accordingly
respondToHashChanges: true,
// Push each slide change to the browser history
history: true,
// Enable keyboard shortcuts for navigation
keyboard: true,
// Enable the slide overview mode
overview: true,
// Disables the default reveal.js slide layout (scaling and centering)
// so that you can use custom CSS layout
disableLayout: false,
// Vertical centering of slides
center: false,
// Enables touch navigation on devices with touch input
touch: true,
// Loop the presentation
loop: false,
// Change the presentation direction to be RTL
rtl: false,
// see https://revealjs.com/vertical-slides/#navigation-mode
navigationMode: 'linear',
// Randomizes the order of slides each time the presentation loads
shuffle: false,
// Turns fragments on and off globally
fragments: true,
// Flags whether to include the current fragment in the URL,
// so that reloading brings you to the same fragment position
fragmentInURL: false,
// Flags if the presentation is running in an embedded mode,
// i.e. contained within a limited portion of the screen
embedded: false,
// Flags if we should show a help overlay when the questionmark
// key is pressed
help: true,
// Flags if it should be possible to pause the presentation (blackout)
pause: true,
// Flags if speaker notes should be visible to all viewers
showNotes: false,
// Global override for autoplaying embedded media (null/true/false)
autoPlayMedia: null,
// Global override for preloading lazy-loaded iframes (null/true/false)
preloadIframes: null,
// Number of milliseconds between automatically proceeding to the
// next slide, disabled when set to 0, this value can be overwritten
// by using a data-autoslide attribute on your slides
autoSlide: 0,
// Stop auto-sliding after user input
autoSlideStoppable: true,
// Use this method for navigation when auto-sliding
autoSlideMethod: null,
// Specify the average time in seconds that you think you will spend
// presenting each slide. This is used to show a pacing timer in the
// speaker view
defaultTiming: null,
// Enable slide navigation via mouse wheel
mouseWheel: false,
// The display mode that will be used to show slides
display: 'block',
// Hide cursor if inactive
hideInactiveCursor: true,
// Time before the cursor is hidden (in ms)
hideCursorTime: 5000,
// Opens links in an iframe preview overlay
previewLinks: false,
// Transition style (none/fade/slide/convex/concave/zoom)
transition: 'concave',
// Transition speed (default/fast/slow)
transitionSpeed: 'default',
// Transition style for full page slide backgrounds
// (none/fade/slide/convex/concave/zoom)
backgroundTransition: 'none',
// Number of slides away from the current that are visible
viewDistance: 3,
// Number of slides away from the current that are visible on mobile
// devices. It is advisable to set this to a lower number than
// viewDistance in order to save resources.
mobileViewDistance: 2,
// The "normal" size of the presentation, aspect ratio will be preserved
// when the presentation is scaled to fit different resolutions. Can be
// specified using percentage units.
width: 1050,
height: 700,
// Factor of the display size that should remain empty around the content
margin: 0.1,
math: {
mathjax: 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js',
config: 'TeX-AMS_HTML-full',
tex2jax: {
inlineMath: [['\\(','\\)']],
displayMath: [['\\[','\\]']],
balanceBraces: true,
processEscapes: false,
processRefs: true,
processEnvironments: true,
preview: 'TeX',
skipTags: ['script','noscript','style','textarea','pre','code'],
ignoreClass: 'tex2jax_ignore',
processClass: 'tex2jax_process'
},
},