-
Notifications
You must be signed in to change notification settings - Fork 119
/
Copy patharithmetic_backend.hpp
676 lines (598 loc) · 25.4 KB
/
arithmetic_backend.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
///////////////////////////////////////////////////////////////
// Copyright 2012 John Maddock. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt
#ifndef BOOST_MATH_FLOAT_BACKEND_HPP
#define BOOST_MATH_FLOAT_BACKEND_HPP
#include <iostream>
#include <iomanip>
#include <sstream>
#include <cstdint>
#include <boost/lexical_cast.hpp>
#include <boost/math/concepts/real_concept.hpp>
#include <boost/multiprecision/number.hpp>
#include <boost/integer/common_factor_rt.hpp>
#include <boost/container_hash/hash.hpp>
namespace boost {
namespace multiprecision {
namespace backends {
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable : 4389 4244 4018 4244 4127)
#endif
template <class Arithmetic>
struct arithmetic_backend
{
typedef std::tuple<short, int, long, long long> signed_types;
typedef std::tuple<unsigned short, unsigned, unsigned long, unsigned long long> unsigned_types;
typedef std::tuple<float, double, long double> float_types;
typedef int exponent_type;
BOOST_MP_CXX14_CONSTEXPR arithmetic_backend() : m_value(0) {}
BOOST_MP_CXX14_CONSTEXPR arithmetic_backend(const arithmetic_backend& o) : m_value(o.m_value) {}
template <class A>
BOOST_MP_CXX14_CONSTEXPR arithmetic_backend(const A& o, const typename std::enable_if<boost::multiprecision::detail::is_arithmetic<A>::value && std::numeric_limits<A>::is_specialized>::type* = nullptr) : m_value(o) {}
template <class A>
BOOST_MP_CXX14_CONSTEXPR arithmetic_backend(const arithmetic_backend<A>& o) : m_value(o.data()) {}
BOOST_MP_CXX14_CONSTEXPR arithmetic_backend& operator=(const arithmetic_backend& o)
{
m_value = o.m_value;
return *this;
}
template <class A>
BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<boost::multiprecision::detail::is_arithmetic<A>::value, arithmetic_backend&>::type operator=(A i)
{
m_value = static_cast<Arithmetic>(i);
return *this;
}
template <class A>
BOOST_MP_CXX14_CONSTEXPR arithmetic_backend& operator=(const arithmetic_backend<A>& i)
{
m_value = i.data();
return *this;
}
arithmetic_backend& operator=(const char* s)
{
#ifndef BOOST_NO_EXCEPTIONS
try
{
#endif
m_value = boost::lexical_cast<Arithmetic>(s);
#ifndef BOOST_NO_EXCEPTIONS
}
catch (const bad_lexical_cast&)
{
throw std::runtime_error(std::string("Unable to interpret the string provided: \"") + s + std::string("\" as a compatible number type."));
}
#endif
return *this;
}
BOOST_MP_CXX14_CONSTEXPR void swap(arithmetic_backend& o)
{
std::swap(m_value, o.m_value);
}
std::string str(std::streamsize digits, std::ios_base::fmtflags f) const
{
std::stringstream ss;
ss.flags(f);
ss << std::setprecision(digits ? digits : std::numeric_limits<Arithmetic>::digits10 + 4) << m_value;
return ss.str();
}
BOOST_MP_CXX14_CONSTEXPR void do_negate(const std::integral_constant<bool, true>&)
{
m_value = 1 + ~m_value;
}
BOOST_MP_CXX14_CONSTEXPR void do_negate(const std::integral_constant<bool, false>&)
{
m_value = -m_value;
}
BOOST_MP_CXX14_CONSTEXPR void negate()
{
do_negate(std::integral_constant<bool, boost::multiprecision::detail::is_unsigned<Arithmetic>::value>());
}
BOOST_MP_CXX14_CONSTEXPR int compare(const arithmetic_backend& o) const
{
return m_value > o.m_value ? 1 : (m_value < o.m_value ? -1 : 0);
}
template <class A>
BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<boost::multiprecision::detail::is_arithmetic<A>::value, int>::type compare(A i) const
{
return m_value > static_cast<Arithmetic>(i) ? 1 : (m_value < static_cast<Arithmetic>(i) ? -1 : 0);
}
BOOST_MP_CXX14_CONSTEXPR Arithmetic& data() { return m_value; }
BOOST_MP_CXX14_CONSTEXPR const Arithmetic& data() const { return m_value; }
private:
Arithmetic m_value;
};
template <class R, class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<boost::multiprecision::detail::is_integral<R>::value>::type eval_convert_to(R* result, const arithmetic_backend<Arithmetic>& backend)
{
using c_type = typename std::common_type<R, Arithmetic>::type;
constexpr const c_type max = static_cast<c_type>((std::numeric_limits<R>::max)());
constexpr const c_type min = static_cast<c_type>((std::numeric_limits<R>::min)());
c_type ct = static_cast<c_type>(backend.data());
if ((backend.data() < 0) && !std::numeric_limits<R>::is_signed)
{
BOOST_THROW_EXCEPTION(std::range_error("Attempt to convert negative number to unsigned type."));
}
if (ct > max)
{
*result = boost::multiprecision::detail::is_signed<R>::value ? (std::numeric_limits<R>::max)() : static_cast<R>(backend.data());
}
else if (std::numeric_limits<Arithmetic>::is_signed && (ct < min))
{
*result = (std::numeric_limits<R>::min)();
}
else
{
*result = backend.data();
}
}
template <class R, class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<!boost::multiprecision::detail::is_integral<R>::value && !std::is_enum<R>::value>::type eval_convert_to(R* result, const arithmetic_backend<Arithmetic>& backend)
{
*result = backend.data();
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR bool eval_eq(const arithmetic_backend<Arithmetic>& a, const arithmetic_backend<Arithmetic>& b)
{
return a.data() == b.data();
}
template <class Arithmetic, class A2>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<boost::multiprecision::detail::is_arithmetic<A2>::value, bool>::type eval_eq(const arithmetic_backend<Arithmetic>& a, const A2& b)
{
return a.data() == static_cast<Arithmetic>(b);
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR bool eval_lt(const arithmetic_backend<Arithmetic>& a, const arithmetic_backend<Arithmetic>& b)
{
return a.data() < b.data();
}
template <class Arithmetic, class A2>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<boost::multiprecision::detail::is_arithmetic<A2>::value, bool>::type eval_lt(const arithmetic_backend<Arithmetic>& a, const A2& b)
{
return a.data() < static_cast<Arithmetic>(b);
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR bool eval_gt(const arithmetic_backend<Arithmetic>& a, const arithmetic_backend<Arithmetic>& b)
{
return a.data() > b.data();
}
template <class Arithmetic, class A2>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<boost::multiprecision::detail::is_arithmetic<A2>::value, bool>::type eval_gt(const arithmetic_backend<Arithmetic>& a, const A2& b)
{
return a.data() > static_cast<Arithmetic>(b);
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_add(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& o)
{
result.data() += o.data();
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_subtract(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& o)
{
result.data() -= o.data();
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_multiply(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& o)
{
result.data() *= o.data();
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<std::numeric_limits<Arithmetic>::has_infinity>::type eval_divide(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& o)
{
result.data() /= o.data();
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<!std::numeric_limits<Arithmetic>::has_infinity>::type eval_divide(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& o)
{
if (!o.data())
BOOST_THROW_EXCEPTION(std::overflow_error("Divide by zero"));
result.data() /= o.data();
}
template <class Arithmetic, class A2>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<boost::multiprecision::detail::is_arithmetic<A2>::value>::type eval_add(arithmetic_backend<Arithmetic>& result, const A2& o)
{
result.data() += o;
}
template <class Arithmetic, class A2>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<boost::multiprecision::detail::is_arithmetic<A2>::value>::type eval_subtract(arithmetic_backend<Arithmetic>& result, const A2& o)
{
result.data() -= o;
}
template <class Arithmetic, class A2>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<boost::multiprecision::detail::is_arithmetic<A2>::value>::type eval_multiply(arithmetic_backend<Arithmetic>& result, const A2& o)
{
result.data() *= o;
}
template <class Arithmetic, class A2>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<(boost::multiprecision::detail::is_arithmetic<A2>::value && !std::numeric_limits<Arithmetic>::has_infinity)>::type
eval_divide(arithmetic_backend<Arithmetic>& result, const A2& o)
{
if (!o)
BOOST_THROW_EXCEPTION(std::overflow_error("Divide by zero"));
result.data() /= o;
}
template <class Arithmetic, class A2>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<(boost::multiprecision::detail::is_arithmetic<A2>::value && std::numeric_limits<Arithmetic>::has_infinity)>::type
eval_divide(arithmetic_backend<Arithmetic>& result, const A2& o)
{
result.data() /= o;
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_add(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& a, const arithmetic_backend<Arithmetic>& b)
{
result.data() = a.data() + b.data();
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_subtract(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& a, const arithmetic_backend<Arithmetic>& b)
{
result.data() = a.data() - b.data();
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_multiply(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& a, const arithmetic_backend<Arithmetic>& b)
{
result.data() = a.data() * b.data();
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<std::numeric_limits<Arithmetic>::has_infinity>::type eval_divide(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& a, const arithmetic_backend<Arithmetic>& b)
{
result.data() = a.data() / b.data();
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<!std::numeric_limits<Arithmetic>::has_infinity>::type eval_divide(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& a, const arithmetic_backend<Arithmetic>& b)
{
if (!b.data())
BOOST_THROW_EXCEPTION(std::overflow_error("Divide by zero"));
result.data() = a.data() / b.data();
}
template <class Arithmetic, class A2>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<boost::multiprecision::detail::is_arithmetic<A2>::value>::type eval_add(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& a, const A2& b)
{
result.data() = a.data() + b;
}
template <class Arithmetic, class A2>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<boost::multiprecision::detail::is_arithmetic<A2>::value>::type eval_subtract(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& a, const A2& b)
{
result.data() = a.data() - b;
}
template <class Arithmetic, class A2>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<boost::multiprecision::detail::is_arithmetic<A2>::value>::type eval_multiply(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& a, const A2& b)
{
result.data() = a.data() * b;
}
template <class Arithmetic, class A2>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<(boost::multiprecision::detail::is_arithmetic<A2>::value && !std::numeric_limits<Arithmetic>::has_infinity)>::type
eval_divide(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& a, const A2& b)
{
if (!b)
BOOST_THROW_EXCEPTION(std::overflow_error("Divide by zero"));
result.data() = a.data() / b;
}
template <class Arithmetic, class A2>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<(boost::multiprecision::detail::is_arithmetic<A2>::value && std::numeric_limits<Arithmetic>::has_infinity)>::type
eval_divide(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& a, const A2& b)
{
result.data() = a.data() / b;
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR bool eval_is_zero(const arithmetic_backend<Arithmetic>& val)
{
return val.data() == 0;
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<
(!std::numeric_limits<Arithmetic>::is_specialized || std::numeric_limits<Arithmetic>::is_signed), int>::type
eval_get_sign(const arithmetic_backend<Arithmetic>& val)
{
return val.data() == 0 ? 0 : val.data() < 0 ? -1 : 1;
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<
!(std::numeric_limits<Arithmetic>::is_specialized || std::numeric_limits<Arithmetic>::is_signed), int>::type
eval_get_sign(const arithmetic_backend<Arithmetic>& val)
{
return val.data() == 0 ? 0 : 1;
}
template <class T>
inline BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<boost::multiprecision::detail::is_unsigned<T>::value, T>::type abs(T v) { return v; }
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_abs(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& o)
{
using boost::multiprecision::backends::abs;
using std::abs;
result.data() = abs(o.data());
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_fabs(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& o)
{
result.data() = std::abs(o.data());
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_floor(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& o)
{
BOOST_MATH_STD_USING
result.data() = floor(o.data());
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_ceil(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& o)
{
BOOST_MATH_STD_USING
result.data() = ceil(o.data());
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_sqrt(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& o)
{
BOOST_MATH_STD_USING
result.data() = sqrt(o.data());
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR int eval_fpclassify(const arithmetic_backend<Arithmetic>& o)
{
return (boost::math::fpclassify)(o.data());
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_trunc(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& o)
{
BOOST_MATH_STD_USING
result.data() = trunc(o.data());
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_round(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& o)
{
BOOST_MATH_STD_USING
result.data() = round(o.data());
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_frexp(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& a, int* v)
{
BOOST_MATH_STD_USING
result.data() = frexp(a.data(), v);
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_ldexp(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& a, int v)
{
BOOST_MATH_STD_USING
result.data() = ldexp(a.data(), v);
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_exp(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& o)
{
BOOST_MATH_STD_USING
result.data() = exp(o.data());
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_log(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& o)
{
BOOST_MATH_STD_USING
result.data() = log(o.data());
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_log10(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& o)
{
BOOST_MATH_STD_USING
result.data() = log10(o.data());
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_sin(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& o)
{
BOOST_MATH_STD_USING
result.data() = sin(o.data());
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_cos(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& o)
{
BOOST_MATH_STD_USING
result.data() = cos(o.data());
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_tan(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& o)
{
BOOST_MATH_STD_USING
result.data() = tan(o.data());
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_acos(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& o)
{
BOOST_MATH_STD_USING
result.data() = acos(o.data());
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_asin(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& o)
{
BOOST_MATH_STD_USING
result.data() = asin(o.data());
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_atan(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& o)
{
BOOST_MATH_STD_USING
result.data() = atan(o.data());
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_sinh(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& o)
{
BOOST_MATH_STD_USING
result.data() = sinh(o.data());
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_cosh(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& o)
{
BOOST_MATH_STD_USING
result.data() = cosh(o.data());
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_tanh(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& o)
{
BOOST_MATH_STD_USING
result.data() = tanh(o.data());
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_fmod(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& a, const arithmetic_backend<Arithmetic>& b)
{
BOOST_MATH_STD_USING
result.data() = fmod(a.data(), b.data());
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_pow(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& a, const arithmetic_backend<Arithmetic>& b)
{
BOOST_MATH_STD_USING
result.data() = pow(a.data(), b.data());
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_atan2(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& a, const arithmetic_backend<Arithmetic>& b)
{
BOOST_MATH_STD_USING
result.data() = atan2(a.data(), b.data());
}
template <class Arithmetic, class I>
inline BOOST_MP_CXX14_CONSTEXPR void eval_left_shift(arithmetic_backend<Arithmetic>& result, I val)
{
result.data() <<= val;
}
template <class Arithmetic, class I>
inline BOOST_MP_CXX14_CONSTEXPR void eval_right_shift(arithmetic_backend<Arithmetic>& result, I val)
{
result.data() >>= val;
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_modulus(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& a)
{
result.data() %= a.data();
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_bitwise_and(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& a)
{
result.data() &= a.data();
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_bitwise_or(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& a)
{
result.data() |= a.data();
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_bitwise_xor(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& a)
{
result.data() ^= a.data();
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_complement(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& a)
{
result.data() = ~a.data();
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_gcd(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& a, const arithmetic_backend<Arithmetic>& b)
{
result.data() = boost::integer::gcd(a.data(), b.data());
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR void eval_lcm(arithmetic_backend<Arithmetic>& result, const arithmetic_backend<Arithmetic>& a, const arithmetic_backend<Arithmetic>& b)
{
result.data() = boost::integer::lcm(a.data(), b.data());
}
template <class Arithmetic>
inline BOOST_MP_CXX14_CONSTEXPR std::size_t hash_value(const arithmetic_backend<Arithmetic>& a)
{
boost::hash<Arithmetic> hasher;
return hasher(a.data());
}
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
} // namespace backends
using boost::multiprecision::backends::arithmetic_backend;
template <class Arithmetic>
struct number_category<arithmetic_backend<Arithmetic> > : public std::integral_constant<int, boost::multiprecision::detail::is_integral<Arithmetic>::value ? number_kind_integer : number_kind_floating_point>
{};
namespace detail {
template <class Backend>
struct double_precision_type;
template <class Arithmetic, boost::multiprecision::expression_template_option ET>
struct double_precision_type<number<arithmetic_backend<Arithmetic>, ET> >
{
typedef number<arithmetic_backend<typename double_precision_type<Arithmetic>::type>, ET> type;
};
template <>
struct double_precision_type<arithmetic_backend<std::int32_t> >
{
typedef arithmetic_backend<std::int64_t> type;
};
} // namespace detail
}} // namespace boost::multiprecision
#if !(defined(__SGI_STL_PORT) || defined(BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS))
//
// We shouldn't need these to get code to compile, however for the sake of
// "level playing field" performance comparisons they avoid the very slow
// lexical_cast's that would otherwise take place. Definition has to be guarded
// by the inverse of pp-logic in real_concept.hpp which defines these as a workaround
// for STLPort plus some other old/broken standartd libraries.
//
namespace boost { namespace math { namespace tools {
template <>
inline unsigned int real_cast<unsigned int, concepts::real_concept>(concepts::real_concept r)
{
return static_cast<unsigned int>(r.value());
}
template <>
inline int real_cast<int, concepts::real_concept>(concepts::real_concept r)
{
return static_cast<int>(r.value());
}
template <>
inline long real_cast<long, concepts::real_concept>(concepts::real_concept r)
{
return static_cast<long>(r.value());
}
// Converts from T to narrower floating-point types, float, double & long double.
template <>
inline float real_cast<float, concepts::real_concept>(concepts::real_concept r)
{
return static_cast<float>(r.value());
}
template <>
inline double real_cast<double, concepts::real_concept>(concepts::real_concept r)
{
return static_cast<double>(r.value());
}
template <>
inline long double real_cast<long double, concepts::real_concept>(concepts::real_concept r)
{
return r.value();
}
}}} // namespace boost::math::tools
#endif
namespace std {
template <class Arithmetic, boost::multiprecision::expression_template_option ExpressionTemplates>
class numeric_limits<boost::multiprecision::number<boost::multiprecision::arithmetic_backend<Arithmetic>, ExpressionTemplates> > : public std::numeric_limits<Arithmetic>
{
typedef std::numeric_limits<Arithmetic> base_type;
typedef boost::multiprecision::number<boost::multiprecision::arithmetic_backend<Arithmetic>, ExpressionTemplates> number_type;
public:
static constexpr number_type(min)() noexcept { return (base_type::min)(); }
static constexpr number_type(max)() noexcept { return (base_type::max)(); }
static constexpr number_type lowest() noexcept { return -(max)(); }
static constexpr number_type epsilon() noexcept { return base_type::epsilon(); }
static constexpr number_type round_error() noexcept { return epsilon() / 2; }
static constexpr number_type infinity() noexcept { return base_type::infinity(); }
static constexpr number_type quiet_NaN() noexcept { return base_type::quiet_NaN(); }
static constexpr number_type signaling_NaN() noexcept { return base_type::signaling_NaN(); }
static constexpr number_type denorm_min() noexcept { return base_type::denorm_min(); }
};
template <>
class numeric_limits<boost::math::concepts::real_concept> : public std::numeric_limits<long double>
{
typedef std::numeric_limits<long double> base_type;
typedef boost::math::concepts::real_concept number_type;
public:
static const number_type(min)() noexcept { return (base_type::min)(); }
static const number_type(max)() noexcept { return (base_type::max)(); }
static const number_type lowest() noexcept { return -(max)(); }
static const number_type epsilon() noexcept { return base_type::epsilon(); }
static const number_type round_error() noexcept { return epsilon() / 2; }
static const number_type infinity() noexcept { return base_type::infinity(); }
static const number_type quiet_NaN() noexcept { return base_type::quiet_NaN(); }
static const number_type signaling_NaN() noexcept { return base_type::signaling_NaN(); }
static const number_type denorm_min() noexcept { return base_type::denorm_min(); }
};
} // namespace std
#include <boost/multiprecision/detail/integer_ops.hpp>
#endif