-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmetric.py
169 lines (134 loc) · 4.42 KB
/
metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import numpy as np
from sklearn.preprocessing import LabelBinarizer
from sklearn.metrics import make_scorer
from sklearn.utils import check_X_y
import sys
import math as math
def dcg_at_k(r, k):
r = np.asfarray(r)[:k]
# return np.sum(r)
gain = 2 ** r - 1
discounts = np.log2(np.arange(len(r)) + 2)
return np.sum(gain / discounts)
def ndcg_at_k(r, k, method=0):
dcg_max = dcg_at_k(sorted(r, reverse=True), k)
if not dcg_max:
return 0.
return dcg_at_k(r, k) / dcg_max
class NDCGScorer:
def __init__(self, K=5):
self.K = K
def __call__(self, y_true, y_predict):
sorted_y_index = np.argsort(y_true)
y = np.take(y_predict, sorted_y_index)
return ndcg_at_k(y,self.K)
class NDCGScorer_qid:
def __init__(self, K=5):
self.scorer = NDCGScorer(K)
self.K = K
def __call__(self, y_true, y_predict, qid):
return self.get_scores(y_true, y_predict, qid)
def get_scores(self, true_list, pred_l, qid):
scores = []
# get group off-set
prv_qid = qid[0]
mark_index = [0]
for itr, a in enumerate(qid):
if a != prv_qid:
mark_index.append(itr)
prv_qid = a
mark_index.append(qid.shape[0])
for start, end in zip(mark_index, mark_index[1:]):
# print(true_list[start:end])
scores.append(self.scorer(true_list[start:end], pred_l[start:end]))
return np.array(scores)
class map_scorer():
def __call__(self, y_true, y_predict, qid):
return self.get_scores(y_true, y_predict, qid)
def get_scores(self, true_list, pred_l,qid):
scores = []
# get group off-set
prv_qid = qid[0]
mark_index = [0]
for itr, a in enumerate(qid):
if a != prv_qid:
mark_index.append(itr)
prv_qid = a
mark_index.append(qid.shape[0])
for start, end in zip(mark_index, mark_index[1:]):
# print(true_list[start:end])
scores.append(get_ap(true_list[start:end], pred_l[start:end]))
return np.array(scores)
def get_ap(y_true, y_pred):
order = np.argsort(y_pred)
y_true = np.take(y_true, order)
pos = 1 + np.where(y_true > 0)[0]
n_rels = 1 + np.arange(len(pos))
return np.mean(n_rels / pos) if len(pos) > 0 else 0
def average_precision(r):
"""Score is average precision (area under PR curve)
Relevance is binary (nonzero is relevant).
>>> r = [1, 1, 0, 1, 0, 1, 0, 0, 0, 1]
>>> delta_r = 1. / sum(r)
>>> sum([sum(r[:x + 1]) / (x + 1.) * delta_r for x, y in enumerate(r) if y])
0.7833333333333333
>>> average_precision(r)
0.78333333333333333
Args:
r: Relevance scores (list or numpy) in rank order
(first element is the first item)
Returns:
Average precision
"""
r = np.asarray(r) != 0
out = [precision_at_k(r, k + 1) for k in range(r.size) if r[k]]
if not out:
return 0.
return np.mean(out)
def mean_average_precision(rs):
"""Score is mean average precision
Relevance is binary (nonzero is relevant).
>>> rs = [[1, 1, 0, 1, 0, 1, 0, 0, 0, 1]]
>>> mean_average_precision(rs)
0.78333333333333333
>>> rs = [[1, 1, 0, 1, 0, 1, 0, 0, 0, 1], [0]]
>>> mean_average_precision(rs)
0.39166666666666666
Args:
rs: Iterator of relevance scores (list or numpy) in rank order
(first element is the first item)
Returns:
Mean average precision
"""
return np.mean([average_precision(r) for r in rs])
def precision_at_k(r, k):
"""Score is precision @ k
Relevance is binary (nonzero is relevant).
>>> r = [0, 0, 1]
>>> precision_at_k(r, 1)
0.0
>>> precision_at_k(r, 2)
0.0
>>> precision_at_k(r, 3)
0.33333333333333331
>>> precision_at_k(r, 4)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ValueError: Relevance score length < k
Args:
r: Relevance scores (list or numpy) in rank order
(first element is the first item)
Returns:
Precision @ k
Raises:
ValueError: len(r) must be >= k
"""
assert k >= 1
r = np.asarray(r)[:k] != 0
if r.size != k:
raise ValueError('Relevance score length < k')
return np.mean(r)
# a = [3,3,3,2,2,2,1,0]
# pred = [3,2,3,0,1,2]
# sorter = NDCGScorer(K=5)
# print(sorter(a,pred))