|
1 |
| -#' Construct a Predictiveness Measure |
2 |
| -#' |
3 |
| -#' @param type the measure of interest (e.g., "accuracy", "auc", "r_squared") |
4 |
| -#' @param y the outcome of interest |
5 |
| -#' @param a the exposure of interest (only used if \code{type = "average_value"}) |
6 |
| -#' @param fitted_values fitted values from a regression function using the |
7 |
| -#' observed data (may be within a specified fold, for cross-fitted estimates). |
8 |
| -#' @param cross_fitting_folds folds for cross-fitting, if used to obtain the |
9 |
| -#' fitted values. If not used, a vector of ones. |
10 |
| -#' @param full_y the observed outcome (not used, defaults to \code{NULL}). |
11 |
| -#' @param nuisance_estimators a list of nuisance function estimators on the |
12 |
| -#' observed data (may be within a specified fold, for cross-fitted estimates). |
13 |
| -#' For the average value measure: an estimator of the optimal treatment rule (\code{f_n}); an estimator of the |
14 |
| -#' propensity score under the estimated optimal treatment rule (\code{g_n}); and an estimator |
15 |
| -#' of the outcome regression when treatment is assigned according to the estimated optimal rule (\code{q_n}). |
16 |
| -#' @param C the indicator of coarsening (1 denotes observed, 0 denotes |
17 |
| -#' unobserved). |
18 |
| -#' @param Z either \code{NULL} (if no coarsening) or a matrix-like object |
19 |
| -#' containing the fully observed data. |
20 |
| -#' @param folds_Z either the cross-validation folds for the observed data |
21 |
| -#' (no coarsening) or a vector of folds for the fully observed data Z. |
22 |
| -#' @param ipc_weights weights for inverse probability of coarsening (IPC) |
23 |
| -#' (e.g., inverse weights from a two-phase sample) weighted estimation. |
24 |
| -#' Assumed to be already inverted. |
25 |
| -#' (i.e., ipc_weights = 1 / [estimated probability weights]). |
26 |
| -#' @param ipc_fit_type if "external", then use \code{ipc_eif_preds}; if "SL", |
27 |
| -#' fit a SuperLearner to determine the IPC correction to the efficient |
28 |
| -#' influence function. |
29 |
| -#' @param ipc_eif_preds if \code{ipc_fit_type = "external"}, the fitted values |
30 |
| -#' from a regression of the full-data EIF on the fully observed |
31 |
| -#' covariates/outcome; otherwise, not used. |
32 |
| -#' @param ipc_est_type IPC correction, either \code{"ipw"} (for classical |
33 |
| -#' inverse probability weighting) or \code{"aipw"} (for augmented inverse |
34 |
| -#' probability weighting; the default). |
35 |
| -#' @param scale if doing an IPC correction, then the scale that the correction |
36 |
| -#' should be computed on (e.g., "identity"; or "logit" to logit-transform, |
37 |
| -#' apply the correction, and back-transform). |
38 |
| -#' @param na.rm logical; should \code{NA}s be removed in computation? |
39 |
| -#' (defaults to \code{FALSE}) |
40 |
| -#' @param ... other arguments to SuperLearner, if \code{ipc_fit_type = "SL"}. |
41 |
| -#' |
42 |
| -#' @return An object of class \code{"predictiveness_measure"}, with the following |
43 |
| -#' attributes: |
44 |
| -#' @export |
45 |
| -predictiveness_measure <- function(type = character(), |
46 |
| - y = numeric(), |
47 |
| - a = numeric(), |
48 |
| - fitted_values = numeric(), |
49 |
| - cross_fitting_folds = rep(1, length(fitted_values)), |
50 |
| - full_y = NULL, |
51 |
| - nuisance_estimators = list(), |
52 |
| - C = rep(1, length(y)), |
53 |
| - Z = NULL, |
54 |
| - folds_Z = cross_fitting_folds, |
55 |
| - ipc_weights = rep(1, length(y)), |
56 |
| - ipc_fit_type = "SL", |
57 |
| - ipc_eif_preds = numeric(), |
58 |
| - ipc_est_type = "aipw", |
59 |
| - scale = "identity", |
60 |
| - na.rm = TRUE, |
61 |
| - ...) { |
62 |
| - validate_predictiveness_measure(new_predictiveness_measure( |
63 |
| - type = type, y = y, a = a, fitted_values = fitted_values, cross_fitting_folds = cross_fitting_folds, |
64 |
| - full_y = full_y, nuisance_estimators = nuisance_estimators, C = C, Z = Z, folds_Z = folds_Z, |
65 |
| - ipc_weights = ipc_weights, ipc_fit_type = ipc_fit_type, ipc_eif_preds = ipc_eif_preds, |
66 |
| - ipc_est_type = ipc_est_type, scale = scale, na.rm = na.rm, ... |
67 |
| - )) |
68 |
| -} |
69 |
| - |
70 |
| - |
71 |
| -new_predictiveness_measure <- function(type = character(), |
72 |
| - y = numeric(), |
73 |
| - a = numeric(), |
74 |
| - fitted_values = numeric(), |
75 |
| - cross_fitting_folds = numeric(), |
76 |
| - full_y = NULL, |
77 |
| - nuisance_estimators = list(), |
78 |
| - C = numeric(), |
79 |
| - Z = NULL, |
80 |
| - folds_Z = NULL, |
81 |
| - ipc_weights = numeric(), |
82 |
| - ipc_fit_type = character(), |
83 |
| - ipc_eif_preds = numeric(), |
84 |
| - ipc_est_type = character(), |
85 |
| - scale = character(), |
86 |
| - na.rm = logical(), |
87 |
| - ...) { |
88 |
| - stopifnot(type %in% c("accuracy", "anova", "auc", "average_value", |
89 |
| - "cross_entropy", "deviance", "mse", "r_squared")) |
90 |
| - stopifnot(is.numeric(y)) |
91 |
| - stopifnot(is.numeric(a)) |
92 |
| - stopifnot(is.numeric(fitted_values)) |
93 |
| - stopifnot(is.numeric(cross_fitting_folds)) |
94 |
| - stopifnot(is.numeric(C)) |
95 |
| - stopifnot(is.numeric(ipc_weights)) |
96 |
| - stopifnot(is.character(ipc_fit_type)) |
97 |
| - stopifnot(is.numeric(ipc_eif_preds)) |
98 |
| - stopifnot(is.character(ipc_est_type)) |
99 |
| - stopifnot(scale %in% c("identity", "log", "logit")) |
100 |
| - stopifnot(is.logical(na.rm)) |
101 |
| - |
102 |
| - arg_lst <- list(...) |
103 |
| - if (length(ipc_weights) == 0) { |
104 |
| - ipc_weights <- rep(1, length(y)) |
105 |
| - } |
106 |
| - if (length(C) == 0) { |
107 |
| - C <- rep(1, length(y)) |
108 |
| - folds_Z <- cross_fitting_folds |
109 |
| - } |
110 |
| - structure( |
111 |
| - c(list(y = y, a = a, fitted_values = fitted_values, cross_fitting_folds = cross_fitting_folds, |
112 |
| - K = length(unique(cross_fitting_folds)), full_y = full_y, |
113 |
| - nuisance_estimators = nuisance_estimators, point_est = NA, eif = rep(NA, length(y)), |
114 |
| - C = C, Z = Z, folds_Z = folds_Z, ipc_weights = ipc_weights, ipc_eif_preds = ipc_eif_preds), |
115 |
| - arg_lst), |
116 |
| - type = type, ipc_fit_type = ipc_fit_type, ipc_est_type = ipc_est_type, |
117 |
| - scale = scale, na.rm = na.rm, |
118 |
| - class = "predictiveness_measure" |
119 |
| - ) |
120 |
| -} |
121 |
| - |
122 |
| -validate_predictiveness_measure <- function(x) { |
123 |
| - input_data <- unclass(x) |
124 |
| - type <- attr(x, "type") |
125 |
| - ipc_fit_type <- attr(x, "ipc_fit_type") |
126 |
| - ipc_est_type <- attr(x, "ipc_est_type") |
127 |
| - scale <- attr(x, "scale") |
128 |
| - na.rm <- attr(x, "na.rm") |
129 |
| - |
130 |
| - if (!any(grepl("average_value", type))) { |
131 |
| - if (length(input_data$y) != length(input_data$fitted_values)) { |
132 |
| - stop("The outcome data must have the same dimension as the fitted values", |
133 |
| - call. = FALSE) |
134 |
| - } |
135 |
| - } else { |
136 |
| - if (length(input_data$nuisance_estimators) == 0) { |
137 |
| - stop(paste0( |
138 |
| - "To estimate the average value, the following must be estimated:", |
139 |
| - " the optimal treatment rule (pass this in as named element f_n of the list);", |
140 |
| - " the propensity score under the optimal treatment rule (pass this in as named element g_n of the list);", |
141 |
| - " and the outcome regression when treatment is assigned according to the optimal rule (pass this in as named element q_n of the list)." |
142 |
| - ), call. = FALSE) |
143 |
| - } else { |
144 |
| - if (length(input_data$nuisance_estimators$f_n) != length(input_data$y)) { |
145 |
| - stop("The optimal treatment assignment must have the same dimension as the outcome.", call. = FALSE) |
146 |
| - } |
147 |
| - if (length(input_data$nuisance_estimators$g_n) != length(input_data$y)) { |
148 |
| - stop("The estimated propensity score must have the same dimension as the outcome.", call. = FALSE) |
149 |
| - } |
150 |
| - if (length(input_data$nuisance_estimators$q_n) != length(input_data$y)) { |
151 |
| - stop("The estimated outcome regression must have the same dimension as the outcome.", call. = FALSE) |
152 |
| - } |
153 |
| - } |
154 |
| - } |
155 |
| - if (length(input_data$cross_fitting_folds) != length(input_data$fitted_values)) { |
156 |
| - stop("If cross-fitting is desired, each observation must be put into a fold.") |
157 |
| - } |
158 |
| - if (length(input_data$a) != 0) { |
159 |
| - if (length(input_data$y) != length(input_data$a)) { |
160 |
| - stop("The outcome data must have the same dimension as the exposure data", |
161 |
| - call. = FALSE) |
162 |
| - } |
163 |
| - } |
164 |
| - if (length(input_data$ipc_weights) != length(input_data$C)) { |
165 |
| - stop("The full dataset must have the same dimension as the inverse probability weights", |
166 |
| - call. = FALSE) |
167 |
| - } |
168 |
| - if (!is.null(input_data$Z)) { |
169 |
| - if (nrow(input_data$Z) != length(input_data$C)) { |
170 |
| - stop("The data that are always measured (i.e., are not coarsened) must be the same dimension as the coarsening variable", |
171 |
| - call. = FALSE) |
172 |
| - } |
173 |
| - } |
174 |
| - x |
175 |
| -} |
176 |
| - |
177 |
| -is.predictiveness_measure <- function(x) { |
178 |
| - inherits(x, "predictiveness_measure") |
179 |
| -} |
| 1 | +#' Construct a Predictiveness Measure |
| 2 | +#' |
| 3 | +#' @param type the measure of interest (e.g., "accuracy", "auc", "r_squared") |
| 4 | +#' @param y the outcome of interest |
| 5 | +#' @param a the exposure of interest (only used if \code{type = "average_value"}) |
| 6 | +#' @param fitted_values fitted values from a regression function using the |
| 7 | +#' observed data (may be within a specified fold, for cross-fitted estimates). |
| 8 | +#' @param cross_fitting_folds folds for cross-fitting, if used to obtain the |
| 9 | +#' fitted values. If not used, a vector of ones. |
| 10 | +#' @param full_y the observed outcome (not used, defaults to \code{NULL}). |
| 11 | +#' @param nuisance_estimators a list of nuisance function estimators on the |
| 12 | +#' observed data (may be within a specified fold, for cross-fitted estimates). |
| 13 | +#' For the average value measure: an estimator of the optimal treatment rule (\code{f_n}); an estimator of the |
| 14 | +#' propensity score under the estimated optimal treatment rule (\code{g_n}); and an estimator |
| 15 | +#' of the outcome regression when treatment is assigned according to the estimated optimal rule (\code{q_n}). |
| 16 | +#' @param C the indicator of coarsening (1 denotes observed, 0 denotes |
| 17 | +#' unobserved). |
| 18 | +#' @param Z either \code{NULL} (if no coarsening) or a matrix-like object |
| 19 | +#' containing the fully observed data. |
| 20 | +#' @param folds_Z either the cross-validation folds for the observed data |
| 21 | +#' (no coarsening) or a vector of folds for the fully observed data Z. |
| 22 | +#' @param ipc_weights weights for inverse probability of coarsening (IPC) |
| 23 | +#' (e.g., inverse weights from a two-phase sample) weighted estimation. |
| 24 | +#' Assumed to be already inverted. |
| 25 | +#' (i.e., ipc_weights = 1 / [estimated probability weights]). |
| 26 | +#' @param ipc_fit_type if "external", then use \code{ipc_eif_preds}; if "SL", |
| 27 | +#' fit a SuperLearner to determine the IPC correction to the efficient |
| 28 | +#' influence function. |
| 29 | +#' @param ipc_eif_preds if \code{ipc_fit_type = "external"}, the fitted values |
| 30 | +#' from a regression of the full-data EIF on the fully observed |
| 31 | +#' covariates/outcome; otherwise, not used. |
| 32 | +#' @param ipc_est_type IPC correction, either \code{"ipw"} (for classical |
| 33 | +#' inverse probability weighting) or \code{"aipw"} (for augmented inverse |
| 34 | +#' probability weighting; the default). |
| 35 | +#' @param scale if doing an IPC correction, then the scale that the correction |
| 36 | +#' should be computed on (e.g., "identity"; or "logit" to logit-transform, |
| 37 | +#' apply the correction, and back-transform). |
| 38 | +#' @param na.rm logical; should \code{NA}s be removed in computation? |
| 39 | +#' (defaults to \code{FALSE}) |
| 40 | +#' @param ... other arguments to SuperLearner, if \code{ipc_fit_type = "SL"}. |
| 41 | +#' |
| 42 | +#' @return An object of class \code{"predictiveness_measure"}, with the following |
| 43 | +#' attributes: |
| 44 | +#' @export |
| 45 | +predictiveness_measure <- function(type = character(), |
| 46 | + y = numeric(), |
| 47 | + a = numeric(), |
| 48 | + fitted_values = numeric(), |
| 49 | + cross_fitting_folds = rep(1, length(fitted_values)), |
| 50 | + full_y = NULL, |
| 51 | + nuisance_estimators = list(), |
| 52 | + C = rep(1, length(y)), |
| 53 | + Z = NULL, |
| 54 | + folds_Z = cross_fitting_folds, |
| 55 | + ipc_weights = rep(1, length(y)), |
| 56 | + ipc_fit_type = "SL", |
| 57 | + ipc_eif_preds = numeric(), |
| 58 | + ipc_est_type = "aipw", |
| 59 | + scale = "identity", |
| 60 | + na.rm = TRUE, |
| 61 | + ...) { |
| 62 | + validate_predictiveness_measure(new_predictiveness_measure( |
| 63 | + type = type, y = y, a = a, fitted_values = fitted_values, cross_fitting_folds = cross_fitting_folds, |
| 64 | + full_y = full_y, nuisance_estimators = nuisance_estimators, C = C, Z = Z, folds_Z = folds_Z, |
| 65 | + ipc_weights = ipc_weights, ipc_fit_type = ipc_fit_type, ipc_eif_preds = ipc_eif_preds, |
| 66 | + ipc_est_type = ipc_est_type, scale = scale, na.rm = na.rm, ... |
| 67 | + )) |
| 68 | +} |
| 69 | + |
| 70 | + |
| 71 | +new_predictiveness_measure <- function(type = character(), |
| 72 | + y = numeric(), |
| 73 | + a = numeric(), |
| 74 | + fitted_values = numeric(), |
| 75 | + cross_fitting_folds = numeric(), |
| 76 | + full_y = NULL, |
| 77 | + nuisance_estimators = list(), |
| 78 | + C = numeric(), |
| 79 | + Z = NULL, |
| 80 | + folds_Z = NULL, |
| 81 | + ipc_weights = numeric(), |
| 82 | + ipc_fit_type = character(), |
| 83 | + ipc_eif_preds = numeric(), |
| 84 | + ipc_est_type = character(), |
| 85 | + scale = character(), |
| 86 | + na.rm = logical(), |
| 87 | + ...) { |
| 88 | + stopifnot(type %in% c("accuracy", "anova", "auc", "average_value", |
| 89 | + "cross_entropy", "deviance", "mse", "r_squared", |
| 90 | + "sensitivity", "specificity", "ppv", "npv")) |
| 91 | + stopifnot(is.numeric(y)) |
| 92 | + stopifnot(is.numeric(a)) |
| 93 | + stopifnot(is.numeric(fitted_values)) |
| 94 | + stopifnot(is.numeric(cross_fitting_folds)) |
| 95 | + stopifnot(is.numeric(C)) |
| 96 | + stopifnot(is.numeric(ipc_weights)) |
| 97 | + stopifnot(is.character(ipc_fit_type)) |
| 98 | + stopifnot(is.numeric(ipc_eif_preds)) |
| 99 | + stopifnot(is.character(ipc_est_type)) |
| 100 | + stopifnot(scale %in% c("identity", "log", "logit")) |
| 101 | + stopifnot(is.logical(na.rm)) |
| 102 | + |
| 103 | + arg_lst <- list(...) |
| 104 | + if (length(ipc_weights) == 0) { |
| 105 | + ipc_weights <- rep(1, length(y)) |
| 106 | + } |
| 107 | + if (length(C) == 0) { |
| 108 | + C <- rep(1, length(y)) |
| 109 | + folds_Z <- cross_fitting_folds |
| 110 | + } |
| 111 | + structure( |
| 112 | + c(list(y = y, a = a, fitted_values = fitted_values, cross_fitting_folds = cross_fitting_folds, |
| 113 | + K = length(unique(cross_fitting_folds)), full_y = full_y, |
| 114 | + nuisance_estimators = nuisance_estimators, point_est = NA, eif = rep(NA, length(y)), |
| 115 | + C = C, Z = Z, folds_Z = folds_Z, ipc_weights = ipc_weights, ipc_eif_preds = ipc_eif_preds), |
| 116 | + arg_lst), |
| 117 | + type = type, ipc_fit_type = ipc_fit_type, ipc_est_type = ipc_est_type, |
| 118 | + scale = scale, na.rm = na.rm, |
| 119 | + class = "predictiveness_measure" |
| 120 | + ) |
| 121 | +} |
| 122 | + |
| 123 | +validate_predictiveness_measure <- function(x) { |
| 124 | + input_data <- unclass(x) |
| 125 | + type <- attr(x, "type") |
| 126 | + ipc_fit_type <- attr(x, "ipc_fit_type") |
| 127 | + ipc_est_type <- attr(x, "ipc_est_type") |
| 128 | + scale <- attr(x, "scale") |
| 129 | + na.rm <- attr(x, "na.rm") |
| 130 | + |
| 131 | + if (!any(grepl("average_value", type))) { |
| 132 | + if (length(input_data$y) != length(input_data$fitted_values)) { |
| 133 | + stop("The outcome data must have the same dimension as the fitted values", |
| 134 | + call. = FALSE) |
| 135 | + } |
| 136 | + } else { |
| 137 | + if (length(input_data$nuisance_estimators) == 0) { |
| 138 | + stop(paste0( |
| 139 | + "To estimate the average value, the following must be estimated:", |
| 140 | + " the optimal treatment rule (pass this in as named element f_n of the list);", |
| 141 | + " the propensity score under the optimal treatment rule (pass this in as named element g_n of the list);", |
| 142 | + " and the outcome regression when treatment is assigned according to the optimal rule (pass this in as named element q_n of the list)." |
| 143 | + ), call. = FALSE) |
| 144 | + } else { |
| 145 | + if (length(input_data$nuisance_estimators$f_n) != length(input_data$y)) { |
| 146 | + stop("The optimal treatment assignment must have the same dimension as the outcome.", call. = FALSE) |
| 147 | + } |
| 148 | + if (length(input_data$nuisance_estimators$g_n) != length(input_data$y)) { |
| 149 | + stop("The estimated propensity score must have the same dimension as the outcome.", call. = FALSE) |
| 150 | + } |
| 151 | + if (length(input_data$nuisance_estimators$q_n) != length(input_data$y)) { |
| 152 | + stop("The estimated outcome regression must have the same dimension as the outcome.", call. = FALSE) |
| 153 | + } |
| 154 | + } |
| 155 | + } |
| 156 | + if (length(input_data$cross_fitting_folds) != length(input_data$fitted_values)) { |
| 157 | + stop("If cross-fitting is desired, each observation must be put into a fold.") |
| 158 | + } |
| 159 | + if (length(input_data$a) != 0) { |
| 160 | + if (length(input_data$y) != length(input_data$a)) { |
| 161 | + stop("The outcome data must have the same dimension as the exposure data", |
| 162 | + call. = FALSE) |
| 163 | + } |
| 164 | + } |
| 165 | + if (length(input_data$ipc_weights) != length(input_data$C)) { |
| 166 | + stop("The full dataset must have the same dimension as the inverse probability weights", |
| 167 | + call. = FALSE) |
| 168 | + } |
| 169 | + if (!is.null(input_data$Z)) { |
| 170 | + if (nrow(input_data$Z) != length(input_data$C)) { |
| 171 | + stop("The data that are always measured (i.e., are not coarsened) must be the same dimension as the coarsening variable", |
| 172 | + call. = FALSE) |
| 173 | + } |
| 174 | + } |
| 175 | + x |
| 176 | +} |
| 177 | + |
| 178 | +is.predictiveness_measure <- function(x) { |
| 179 | + inherits(x, "predictiveness_measure") |
| 180 | +} |
0 commit comments