@@ -44,6 +44,7 @@ def get_config(runner,
44
44
external_model : bool = True ,
45
45
augment : bool = False ,
46
46
nochip : bool = True ,
47
+ allow_streaming : bool = False ,
47
48
num_epochs : int = 10 ,
48
49
batch_sz : int = 8 ,
49
50
test : bool = False ) -> SemanticSegmentationConfig :
@@ -69,6 +70,8 @@ def get_config(runner,
69
70
training instead of from pre-generated chips. The analyze and chip
70
71
commands should not be run, if this is set to True. Defaults to
71
72
True.
73
+ allow_streaming (bool): If True, read directly from remote files
74
+ instead of downloading them. Defaults to False.
72
75
num_epochs (int): Number of epochs to train for.
73
76
batch_sz (int): Batch size.
74
77
test (bool): If True, does the following simplifications:
@@ -142,7 +145,9 @@ def make_scene(id) -> SceneConfig:
142
145
label_uri = label_crop_uri
143
146
144
147
raster_source = RasterioSourceConfig (
145
- uris = [raster_uri ], channel_order = channel_order )
148
+ uris = [raster_uri ],
149
+ channel_order = channel_order ,
150
+ allow_streaming = allow_streaming )
146
151
147
152
# Using with_rgb_class_map because label TIFFs have classes encoded as
148
153
# RGB colors.
@@ -151,7 +156,8 @@ def make_scene(id) -> SceneConfig:
151
156
uris = [label_uri ],
152
157
transformers = [
153
158
RGBClassTransformerConfig (class_config = class_config )
154
- ]))
159
+ ],
160
+ allow_streaming = allow_streaming ))
155
161
156
162
# URI will be injected by scene config.
157
163
# Using rgb=True because we want prediction TIFFs to be in
0 commit comments