-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathmodel_builder.py
1814 lines (1624 loc) · 79.3 KB
/
model_builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
"""Holds the ModelBuilder class and the ModelServer enum."""
from __future__ import absolute_import
import importlib.util
import json
import uuid
from typing import Any, Type, List, Dict, Optional, Union
from dataclasses import dataclass, field
import logging
import os
import re
from pathlib import Path
from sagemaker_core.main.resources import TrainingJob
from sagemaker.transformer import Transformer
from sagemaker.async_inference import AsyncInferenceConfig
from sagemaker.batch_inference.batch_transform_inference_config import BatchTransformInferenceConfig
from sagemaker.compute_resource_requirements import ResourceRequirements
from sagemaker.enums import Tag, EndpointType
from sagemaker.estimator import Estimator
from sagemaker.jumpstart.accessors import JumpStartS3PayloadAccessor
from sagemaker.jumpstart.utils import get_jumpstart_content_bucket
from sagemaker.s3 import S3Downloader
from sagemaker import Session
from sagemaker.model import Model
from sagemaker.base_predictor import PredictorBase
from sagemaker.serializers import NumpySerializer, TorchTensorSerializer
from sagemaker.deserializers import JSONDeserializer, TorchTensorDeserializer
from sagemaker.serve.builder.schema_builder import SchemaBuilder
from sagemaker.serve.builder.tf_serving_builder import TensorflowServing
from sagemaker.serve.mode.function_pointers import Mode
from sagemaker.serve.mode.sagemaker_endpoint_mode import SageMakerEndpointMode
from sagemaker.serve.mode.local_container_mode import LocalContainerMode
from sagemaker.serve.mode.in_process_mode import InProcessMode
from sagemaker.serve.detector.pickler import save_pkl, save_xgboost
from sagemaker.serve.builder.serve_settings import _ServeSettings
from sagemaker.serve.builder.djl_builder import DJL
from sagemaker.serve.builder.tei_builder import TEI
from sagemaker.serve.builder.tgi_builder import TGI
from sagemaker.serve.builder.jumpstart_builder import JumpStart
from sagemaker.serve.builder.transformers_builder import Transformers
from sagemaker.predictor import Predictor
from sagemaker.serve.model_format.mlflow.constants import (
MLFLOW_MODEL_PATH,
MLFLOW_TRACKING_ARN,
MLFLOW_RUN_ID_REGEX,
MLFLOW_REGISTRY_PATH_REGEX,
MODEL_PACKAGE_ARN_REGEX,
MLFLOW_METADATA_FILE,
MLFLOW_PIP_DEPENDENCY_FILE,
)
from sagemaker.serve.model_format.mlflow.utils import (
_get_default_model_server_for_mlflow,
_download_s3_artifacts,
_select_container_for_mlflow_model,
_generate_mlflow_artifact_path,
_get_all_flavor_metadata,
_get_deployment_flavor,
_validate_input_for_mlflow,
_copy_directory_contents,
)
from sagemaker.serve.save_retrive.version_1_0_0.metadata.metadata import Metadata
from sagemaker.serve.spec.inference_spec import InferenceSpec
from sagemaker.serve.utils import task
from sagemaker.serve.utils.exceptions import TaskNotFoundException
from sagemaker.serve.utils.lineage_utils import _maintain_lineage_tracking_for_mlflow_model
from sagemaker.serve.utils.optimize_utils import (
_generate_optimized_model,
_generate_model_source,
_extract_optimization_config_and_env,
_is_s3_uri,
_custom_speculative_decoding,
_extract_speculative_draft_model_provider,
_jumpstart_speculative_decoding,
)
from sagemaker.serve.utils.predictors import (
_get_local_mode_predictor,
_get_in_process_mode_predictor,
)
from sagemaker.serve.utils.hardware_detector import (
_get_gpu_info,
_get_gpu_info_fallback,
_total_inference_model_size_mib,
)
from sagemaker.serve.detector.image_detector import (
auto_detect_container,
_detect_framework_and_version,
_get_model_base,
)
from sagemaker.serve.model_server.torchserve.prepare import prepare_for_torchserve
from sagemaker.serve.model_server.triton.triton_builder import Triton
from sagemaker.serve.utils.telemetry_logger import _capture_telemetry
from sagemaker.serve.utils.types import ModelServer, ModelHub
from sagemaker.serve.validations.check_image_uri import is_1p_image_uri
from sagemaker.serve.save_retrive.version_1_0_0.save.save_handler import SaveHandler
from sagemaker.serve.save_retrive.version_1_0_0.metadata.metadata import get_metadata
from sagemaker.serve.validations.check_image_and_hardware_type import (
validate_image_uri_and_hardware,
)
from sagemaker.serverless import ServerlessInferenceConfig
from sagemaker.utils import Tags, unique_name_from_base
from sagemaker.workflow.entities import PipelineVariable
from sagemaker.huggingface.llm_utils import (
get_huggingface_model_metadata,
download_huggingface_model_metadata,
)
from sagemaker.serve.validations.optimization import _validate_optimization_configuration
from sagemaker.modules.train import ModelTrainer
from sagemaker.modules import logger
# Any new server type should be added here
supported_model_servers = {
ModelServer.TORCHSERVE,
ModelServer.TRITON,
ModelServer.DJL_SERVING,
ModelServer.TENSORFLOW_SERVING,
ModelServer.MMS,
ModelServer.TGI,
ModelServer.TEI,
}
# pylint: disable=attribute-defined-outside-init, disable=E1101, disable=R0901, disable=R1705
@dataclass
class ModelBuilder(Triton, DJL, JumpStart, TGI, Transformers, TensorflowServing, TEI):
"""Class that builds a deployable model.
Args:
role_arn (Optional[str]): The role for the endpoint.
model_path (Optional[str]): The path of the model directory.
sagemaker_session (Optional[sagemaker.session.Session]): The
SageMaker session to use for the execution.
name (Optional[str]): The model name.
mode (Optional[Mode]): The mode of operation. The following
modes are supported:
* ``Mode.SAGEMAKER_ENDPOINT``: Launch on a SageMaker endpoint
* ``Mode.LOCAL_CONTAINER``: Launch locally with a container
* ``Mode.IN_PROCESS``: Launch locally to a FastAPI server instead of using a container.
shared_libs (List[str]): Any shared libraries you want to bring into
the model packaging.
dependencies (Optional[Dict[str, Any]): The dependencies of the model
or container. Takes a dict as an input where you can specify
autocapture as ``True`` or ``False``, a requirements file, or custom
dependencies as a list. A sample ``dependencies`` dict:
.. code:: python
{
"auto": False,
"requirements": "/path/to/requirements.txt",
"custom": ["custom_module==1.2.3",
"other_module@http://some/website.whl"],
}
env_vars (Optional[Dict[str, str]): The environment variables for the runtime
execution.
log_level (Optional[int]): The log level. Possible values are ``CRITICAL``,
``ERROR``, ``WARNING``, ``INFO``, ``DEBUG``, and ``NOTSET``.
content_type (Optional[str]): The content type of the endpoint input data. This value
is automatically derived from the input sample, but you can override it.
accept_type (Optional[str]): The content type of the data accepted from the endpoint.
This value is automatically derived from the output sample, but you can override
the value.
s3_model_data_url (Optional[str]): The S3 location where you want to upload the model
package. Defaults to a S3 bucket prefixed with the account ID.
instance_type (Optional[str]): The instance type of the endpoint. Defaults to the CPU
instance type to help narrow the container type based on the instance family.
schema_builder (Optional[SchemaBuilder]): The input/output schema of the model.
The schema builder translates the input into bytes and converts the response
into a stream. All translations between the server and the client are handled
automatically with the specified input and output.
The schema builder can be omitted for HuggingFace models with task types TextGeneration,
TextClassification, and QuestionAnswering. Omitting SchemaBuilder is in
beta for FillMask, and AutomaticSpeechRecognition use-cases.
model (Optional[Union[object, str, ModelTrainer, TrainingJob, Estimator]]):
Define object from which training artifacts can be extracted.
Either ``model`` or ``inference_spec``
is required for the model builder to build the artifact.
inference_spec (InferenceSpec): The inference spec file with your customized
``invoke`` and ``load`` functions.
image_uri (Optional[str]): The container image uri (which is derived from a
SageMaker-based container).
image_config (dict[str, str] or dict[str, PipelineVariable]): Specifies
whether the image of model container is pulled from ECR, or private
registry in your VPC. By default it is set to pull model container
image from ECR. (default: None).
vpc_config ( Optional[Dict[str, List[Union[str, PipelineVariable]]]]):
The VpcConfig set on the model (default: None)
* 'Subnets' (List[Union[str, PipelineVariable]]): List of subnet ids.
* 'SecurityGroupIds' (List[Union[str, PipelineVariable]]]): List of security group
ids.
model_server (Optional[ModelServer]): The model server to which to deploy.
You need to provide this argument when you specify an ``image_uri``
in order for model builder to build the artifacts correctly (according
to the model server). Possible values for this argument are
``TORCHSERVE``, ``MMS``, ``TENSORFLOW_SERVING``, ``DJL_SERVING``,
``TRITON``, ``TGI``, and ``TEI``.
model_metadata (Optional[Dict[str, Any]): Dictionary used to override model metadata.
Currently, ``HF_TASK`` is overridable for HuggingFace model. HF_TASK should be set for
new models without task metadata in the Hub, adding unsupported task types will throw
an exception. ``MLFLOW_MODEL_PATH`` is available for providing local path or s3 path
to MLflow artifacts. However, ``MLFLOW_MODEL_PATH`` is experimental and is not
intended for production use at this moment. ``CUSTOM_MODEL_PATH`` is available for
providing local path or s3 path to model artifacts. ``FINE_TUNING_MODEL_PATH`` is
available for providing s3 path to fine-tuned model artifacts. ``FINE_TUNING_JOB_NAME``
is available for providing fine-tuned job name. Both ``FINE_TUNING_MODEL_PATH`` and
``FINE_TUNING_JOB_NAME`` are mutually exclusive.
"""
model_path: Optional[str] = field(
default="/tmp/sagemaker/model-builder/" + uuid.uuid1().hex,
metadata={"help": "Define the path of model directory"},
)
role_arn: Optional[str] = field(
default=None, metadata={"help": "Define the role for the endpoint"}
)
sagemaker_session: Optional[Session] = field(
default=None, metadata={"help": "Define sagemaker session for execution"}
)
name: Optional[str] = field(
default="model-name-" + uuid.uuid1().hex,
metadata={"help": "Define the model name"},
)
mode: Optional[Mode] = field(
default=Mode.SAGEMAKER_ENDPOINT,
metadata={
"help": "Define the mode of operation"
"Model Builder supports three modes "
"1/ SageMaker Endpoint"
"2/ Local launch with container"
"3/ Local launch in process"
},
)
shared_libs: List[str] = field(
default_factory=lambda: [],
metadata={"help": "Define any shared lib you want to bring into the model " "packaging"},
)
dependencies: Optional[Dict[str, Any]] = field(
default_factory=lambda: {"auto": False},
metadata={"help": "Define the dependencies of the model/container"},
)
env_vars: Optional[Dict[str, str]] = field(
default_factory=lambda: {},
metadata={"help": "Define the environment variables"},
)
log_level: Optional[int] = field(
default=logging.DEBUG, metadata={"help": "Define the log level"}
)
content_type: Optional[str] = field(
default=None,
metadata={"help": "Define the content type of the input data to the endpoint"},
)
accept_type: Optional[str] = field(
default=None,
metadata={"help": "Define the accept type of the output data from the endpoint"},
)
s3_model_data_url: Optional[str] = field(
default=None,
metadata={"help": "Define the s3 location where you want to upload the model package"},
)
instance_type: Optional[str] = field(
default="ml.c5.xlarge",
metadata={"help": "Define the instance_type of the endpoint"},
)
schema_builder: Optional[SchemaBuilder] = field(
default=None, metadata={"help": "Defines the i/o schema of the model"}
)
model: Optional[Union[object, str, ModelTrainer, TrainingJob, Estimator]] = field(
default=None,
metadata={"help": "Define object from which training artifacts can be extracted"},
)
inference_spec: InferenceSpec = field(
default=None,
metadata={"help": "Define the inference spec file for all customizations"},
)
image_uri: Optional[str] = field(
default=None, metadata={"help": "Define the container image uri"}
)
image_config: Optional[Dict[str, Union[str, PipelineVariable]]] = field(
default=None,
metadata={
"help": "Specifies whether the image of model container is pulled from ECR,"
" or private registry in your VPC. By default it is set to pull model "
"container image from ECR. (default: None)."
},
)
vpc_config: Optional[Dict[str, List[Union[str, PipelineVariable]]]] = field(
default=None,
metadata={
"help": "The VpcConfig set on the model (default: None)."
"* 'Subnets' (List[Union[str, PipelineVariable]]): List of subnet ids."
"* ''SecurityGroupIds'' (List[Union[str, PipelineVariable]]): List of"
" security group ids."
},
)
model_server: Optional[ModelServer] = field(
default=None, metadata={"help": "Define the model server to deploy to."}
)
model_metadata: Optional[Dict[str, Any]] = field(
default=None,
metadata={
"help": "Define the model metadata to override, currently supports `HF_TASK`, "
"`MLFLOW_MODEL_PATH`, `FINE_TUNING_MODEL_PATH`, `FINE_TUNING_JOB_NAME`, and "
"`CUSTOM_MODEL_PATH`. HF_TASK should be set for new models without task metadata "
"in the Hub, Adding unsupported task types will throw an exception."
},
)
def _save_model_inference_spec(self):
"""Placeholder docstring"""
# check if path exists and create if not
if not os.path.exists(self.model_path):
os.makedirs(self.model_path)
code_path = Path(self.model_path).joinpath("code")
# save the model or inference spec in cloud pickle format
if self.inference_spec:
save_pkl(code_path, (self.inference_spec, self.schema_builder))
elif self.model:
self._framework, _ = _detect_framework_and_version(str(_get_model_base(self.model)))
self.env_vars.update(
{
"MODEL_CLASS_NAME": f"{self.model.__class__.__module__}.{self.model.__class__.__name__}"
}
)
# TODO: use framework built-in method to save and load the model for all frameworks
if self._framework == "xgboost":
save_xgboost(code_path, self.model)
save_pkl(code_path, (self._framework, self.schema_builder))
else:
save_pkl(code_path, (self.model, self.schema_builder))
elif self._is_mlflow_model:
save_pkl(code_path, self.schema_builder)
else:
raise ValueError("Cannot detect required model or inference spec")
def _auto_detect_container(self):
"""Placeholder docstring"""
# Auto detect the container image uri
if self.image_uri:
logger.info(
"Skipping auto detection as the image uri is provided %s",
self.image_uri,
)
return
if self.model:
logger.info(
"Auto detect container url for the provided model and on instance %s",
self.instance_type,
)
self.image_uri = auto_detect_container(
self.model, self.sagemaker_session.boto_region_name, self.instance_type
)
elif self.inference_spec:
# TODO: this won't work for larger image.
# Fail and let the customer include the image uri
logger.warning(
"model_path provided with no image_uri. Attempting to autodetect the image\
by loading the model using inference_spec.load()..."
)
self.image_uri = auto_detect_container(
self.inference_spec.load(self.model_path),
self.sagemaker_session.boto_region_name,
self.instance_type,
)
else:
raise ValueError("Cannot detect required model or inference spec")
def _get_serve_setting(self):
"""Placeholder docstring"""
return _ServeSettings(
role_arn=self.role_arn,
s3_model_data_url=self.s3_model_data_url,
instance_type=self.instance_type,
env_vars=self.env_vars,
sagemaker_session=self.sagemaker_session,
)
def _prepare_for_mode(
self, model_path: Optional[str] = None, should_upload_artifacts: Optional[bool] = False
):
"""Prepare this `Model` for serving.
Args:
model_path (Optional[str]): Model path
should_upload_artifacts (Optional[bool]): Whether to upload artifacts to S3.
"""
# TODO: move mode specific prepare steps under _model_builder_deploy_wrapper
self.s3_upload_path = None
if self.mode == Mode.SAGEMAKER_ENDPOINT:
# init the SageMakerEndpointMode object
self.modes[str(Mode.SAGEMAKER_ENDPOINT)] = SageMakerEndpointMode(
inference_spec=self.inference_spec, model_server=self.model_server
)
self.s3_upload_path, env_vars_sagemaker = self.modes[
str(Mode.SAGEMAKER_ENDPOINT)
].prepare(
(model_path or self.model_path),
self.secret_key,
self.serve_settings.s3_model_data_url,
self.sagemaker_session,
self.image_uri,
getattr(self, "model_hub", None) == ModelHub.JUMPSTART,
should_upload_artifacts=should_upload_artifacts,
)
self.env_vars.update(env_vars_sagemaker)
return self.s3_upload_path, env_vars_sagemaker
elif self.mode == Mode.LOCAL_CONTAINER:
# init the LocalContainerMode object
self.modes[str(Mode.LOCAL_CONTAINER)] = LocalContainerMode(
inference_spec=self.inference_spec,
schema_builder=self.schema_builder,
session=self.sagemaker_session,
model_path=self.model_path,
env_vars=self.env_vars,
model_server=self.model_server,
)
self.modes[str(Mode.LOCAL_CONTAINER)].prepare()
return None
elif self.mode == Mode.IN_PROCESS:
# init the InProcessMode object
self.modes[str(Mode.IN_PROCESS)] = InProcessMode(
inference_spec=self.inference_spec,
model=self.model,
schema_builder=self.schema_builder,
session=self.sagemaker_session,
model_path=self.model_path,
env_vars=self.env_vars,
)
self.modes[str(Mode.IN_PROCESS)].prepare()
return None
raise ValueError(
"Please specify mode in: %s, %s, %s"
% (Mode.LOCAL_CONTAINER, Mode.SAGEMAKER_ENDPOINT, Mode.IN_PROCESS)
)
def _get_client_translators(self):
"""Placeholder docstring"""
serializer = None
if self.content_type == "application/x-npy":
serializer = NumpySerializer()
elif self.content_type == "tensor/pt":
serializer = TorchTensorSerializer()
elif self.schema_builder and hasattr(self.schema_builder, "custom_input_translator"):
serializer = self.schema_builder.custom_input_translator
elif self.schema_builder:
serializer = self.schema_builder.input_serializer
else:
raise Exception("Cannot serialize")
deserializer = None
if self.accept_type == "application/json":
deserializer = JSONDeserializer()
elif self.accept_type == "tensor/pt":
deserializer = TorchTensorDeserializer()
elif self.schema_builder and hasattr(self.schema_builder, "custom_output_translator"):
deserializer = self.schema_builder.custom_output_translator
elif self.schema_builder:
deserializer = self.schema_builder.output_deserializer
else:
raise Exception("Cannot deserialize")
return serializer, deserializer
def _get_predictor(
self, endpoint_name: str, sagemaker_session: Session, component_name: Optional[str] = None
) -> Predictor:
"""Placeholder docstring"""
serializer, deserializer = self._get_client_translators()
return Predictor(
endpoint_name=endpoint_name,
sagemaker_session=sagemaker_session,
serializer=serializer,
deserializer=deserializer,
component_name=component_name,
)
def _create_model(self):
"""Placeholder docstring"""
# TODO: we should create model as per the framework
self.pysdk_model = Model(
image_uri=self.image_uri,
image_config=self.image_config,
vpc_config=self.vpc_config,
model_data=self.s3_upload_path,
role=self.serve_settings.role_arn,
env=self.env_vars,
sagemaker_session=self.sagemaker_session,
predictor_cls=self._get_predictor,
name=self.name,
)
# store the modes in the model so that we may
# reference the configurations for local deploy() & predict()
self.pysdk_model.mode = self.mode
self.pysdk_model.modes = self.modes
self.pysdk_model.serve_settings = self.serve_settings
if self.role_arn:
self.pysdk_model.role = self.role_arn
if self.sagemaker_session:
self.pysdk_model.sagemaker_session = self.sagemaker_session
# dynamically generate a method to direct model.deploy() logic based on mode
# unique method to models created via ModelBuilder()
self._original_deploy = self.pysdk_model.deploy
self.pysdk_model.deploy = self._model_builder_deploy_wrapper
self._original_register = self.pysdk_model.register
self.pysdk_model.register = self._model_builder_register_wrapper
self.model_package = None
return self.pysdk_model
@_capture_telemetry("register")
def _model_builder_register_wrapper(self, *args, **kwargs):
"""Placeholder docstring"""
serializer, deserializer = self._get_client_translators()
if "content_types" not in kwargs:
self.pysdk_model.content_types = serializer.CONTENT_TYPE.split()
if "response_types" not in kwargs:
self.pysdk_model.response_types = deserializer.ACCEPT.split()
new_model_package = self._original_register(*args, **kwargs)
self.pysdk_model.model_package_arn = new_model_package.model_package_arn
new_model_package.deploy = self._model_builder_deploy_model_package_wrapper
self.model_package = new_model_package
if getattr(self, "_is_mlflow_model", False) and self.mode == Mode.SAGEMAKER_ENDPOINT:
_maintain_lineage_tracking_for_mlflow_model(
mlflow_model_path=self.model_metadata[MLFLOW_MODEL_PATH],
s3_upload_path=self.s3_upload_path,
sagemaker_session=self.sagemaker_session,
tracking_server_arn=self.model_metadata.get(MLFLOW_TRACKING_ARN),
)
return new_model_package
def _model_builder_deploy_model_package_wrapper(self, *args, **kwargs):
"""Placeholder docstring"""
if self.pysdk_model.model_package_arn is not None:
return self._model_builder_deploy_wrapper(*args, **kwargs)
# need to set the model_package_arn
# so that the model is created using the model_package's configs
self.pysdk_model.model_package_arn = self.model_package.model_package_arn
predictor = self._model_builder_deploy_wrapper(*args, **kwargs)
self.pysdk_model.model_package_arn = None
return predictor
@_capture_telemetry("torchserve.deploy")
def _model_builder_deploy_wrapper(
self,
*args,
container_timeout_in_second: int = 300,
instance_type: str = None,
initial_instance_count: int = None,
mode: str = None,
**kwargs,
) -> Type[PredictorBase]:
"""Placeholder docstring"""
if mode and mode != self.mode:
self._overwrite_mode_in_deploy(overwrite_mode=mode)
if self.mode == Mode.IN_PROCESS:
serializer, deserializer = self._get_client_translators()
predictor = _get_in_process_mode_predictor(
self.modes[str(Mode.IN_PROCESS)], serializer, deserializer
)
self.modes[str(Mode.IN_PROCESS)].create_server(
predictor,
)
return predictor
if self.mode == Mode.LOCAL_CONTAINER:
serializer, deserializer = self._get_client_translators()
predictor = _get_local_mode_predictor(
mode_obj=self.modes[str(Mode.LOCAL_CONTAINER)],
model_server=self.model_server,
serializer=serializer,
deserializer=deserializer,
)
self.modes[str(Mode.LOCAL_CONTAINER)].create_server(
self.image_uri, container_timeout_in_second, self.secret_key, predictor
)
return predictor
if self.mode == Mode.SAGEMAKER_ENDPOINT:
# Validate parameters
# Instance type and instance count parameter validation is done based on deployment type
# and will be done inside Model.deploy()
if is_1p_image_uri(image_uri=self.image_uri):
validate_image_uri_and_hardware(
image_uri=self.image_uri,
instance_type=instance_type,
model_server=self.model_server,
)
if "endpoint_logging" not in kwargs:
kwargs["endpoint_logging"] = True
kwargs.pop("mode", None)
self.pysdk_model.role = kwargs.pop("role", self.pysdk_model.role)
predictor = self._original_deploy(
*args,
instance_type=instance_type,
initial_instance_count=initial_instance_count,
**kwargs,
)
if getattr(self, "_is_mlflow_model", False) and self.mode == Mode.SAGEMAKER_ENDPOINT:
_maintain_lineage_tracking_for_mlflow_model(
mlflow_model_path=self.model_metadata[MLFLOW_MODEL_PATH],
s3_upload_path=self.s3_upload_path,
sagemaker_session=self.sagemaker_session,
tracking_server_arn=self.model_metadata.get(MLFLOW_TRACKING_ARN),
)
return predictor
def _overwrite_mode_in_deploy(self, overwrite_mode: str):
"""Mode overwritten by customer during model.deploy()"""
logger.warning(
"Deploying in %s Mode, overriding existing configurations set for %s mode",
overwrite_mode,
self.mode,
)
if overwrite_mode == Mode.SAGEMAKER_ENDPOINT:
self.mode = self.pysdk_model.mode = Mode.SAGEMAKER_ENDPOINT
s3_upload_path, env_vars_sagemaker = self._prepare_for_mode()
self.pysdk_model.model_data = s3_upload_path
self.pysdk_model.env.update(env_vars_sagemaker)
elif overwrite_mode == Mode.LOCAL_CONTAINER:
self.mode = self.pysdk_model.mode = Mode.LOCAL_CONTAINER
self._prepare_for_mode()
elif overwrite_mode == Mode.IN_PROCESS:
self.mode = self.pysdk_model.mode = Mode.IN_PROCESS
self._prepare_for_mode()
else:
raise ValueError("Mode %s is not supported!" % overwrite_mode)
def _build_for_torchserve(self) -> Type[Model]:
"""Build the model for torchserve"""
self._save_model_inference_spec()
if self.mode != Mode.IN_PROCESS:
self._auto_detect_container()
self.secret_key = prepare_for_torchserve(
model_path=self.model_path,
shared_libs=self.shared_libs,
dependencies=self.dependencies,
session=self.sagemaker_session,
image_uri=self.image_uri,
inference_spec=self.inference_spec,
)
self._prepare_for_mode()
self.model = self._create_model()
return self.model
def _user_agent_decorator(self, func):
"""Placeholder docstring"""
def wrapper(*args, **kwargs):
# Call the original function
result = func(*args, **kwargs)
if "ModelBuilder" in result:
return result
return result + " ModelBuilder"
return wrapper
def _handle_mlflow_input(self):
"""Check whether an MLflow model is present and handle accordingly"""
self._is_mlflow_model = self._has_mlflow_arguments()
if not self._is_mlflow_model:
return
mlflow_model_path = self.model_metadata.get(MLFLOW_MODEL_PATH)
artifact_path = self._get_artifact_path(mlflow_model_path)
if not self._mlflow_metadata_exists(artifact_path):
return
self._initialize_for_mlflow(artifact_path)
_validate_input_for_mlflow(self.model_server, self.env_vars.get("MLFLOW_MODEL_FLAVOR"))
def _has_mlflow_arguments(self) -> bool:
"""Check whether MLflow model arguments are present
Returns:
bool: True if MLflow arguments are present, False otherwise.
"""
if self.inference_spec or self.model:
logger.info(
"Either inference spec or model is provided. "
"ModelBuilder is not handling MLflow model input"
)
return False
if not self.model_metadata:
logger.info(
"No ModelMetadata provided. ModelBuilder is not handling MLflow model input"
)
return False
mlflow_model_path = self.model_metadata.get(MLFLOW_MODEL_PATH)
if not mlflow_model_path:
logger.info(
"%s is not provided in ModelMetadata. ModelBuilder is not handling MLflow model "
"input",
MLFLOW_MODEL_PATH,
)
return False
return True
def _get_artifact_path(self, mlflow_model_path: str) -> str:
"""Retrieves the model artifact location given the Mlflow model input.
Args:
mlflow_model_path (str): The MLflow model path input.
Returns:
str: The path to the model artifact.
"""
if (is_run_id_type := re.match(MLFLOW_RUN_ID_REGEX, mlflow_model_path)) or re.match(
MLFLOW_REGISTRY_PATH_REGEX, mlflow_model_path
):
mlflow_tracking_arn = self.model_metadata.get(MLFLOW_TRACKING_ARN)
if not mlflow_tracking_arn:
raise ValueError(
"%s is not provided in ModelMetadata or through set_tracking_arn "
"but MLflow model path was provided." % MLFLOW_TRACKING_ARN,
)
if not importlib.util.find_spec("sagemaker_mlflow"):
raise ImportError(
"Unable to import sagemaker_mlflow, check if sagemaker_mlflow is installed"
)
import mlflow
mlflow.set_tracking_uri(mlflow_tracking_arn)
if is_run_id_type:
_, run_id, model_path = mlflow_model_path.split("/", 2)
artifact_uri = mlflow.get_run(run_id).info.artifact_uri
if not artifact_uri.endswith("/"):
artifact_uri += "/"
return artifact_uri + model_path
mlflow_client = mlflow.MlflowClient()
if not mlflow_model_path.endswith("/"):
mlflow_model_path += "/"
if "@" in mlflow_model_path:
_, model_name_and_alias, artifact_uri = mlflow_model_path.split("/", 2)
model_name, model_alias = model_name_and_alias.split("@")
model_metadata = mlflow_client.get_model_version_by_alias(model_name, model_alias)
else:
_, model_name, model_version, artifact_uri = mlflow_model_path.split("/", 3)
model_metadata = mlflow_client.get_model_version(model_name, model_version)
source = model_metadata.source
if not source.endswith("/"):
source += "/"
return source + artifact_uri
if re.match(MODEL_PACKAGE_ARN_REGEX, mlflow_model_path):
model_package = self.sagemaker_session.sagemaker_client.describe_model_package(
ModelPackageName=mlflow_model_path
)
return model_package["SourceUri"]
return mlflow_model_path
def _mlflow_metadata_exists(self, path: str) -> bool:
"""Checks whether an MLmodel file exists in the given directory.
Returns:
bool: True if the MLmodel file exists, False otherwise.
"""
if path.startswith("s3://"):
s3_downloader = S3Downloader()
if not path.endswith("/"):
path += "/"
s3_uri_to_mlmodel_file = f"{path}{MLFLOW_METADATA_FILE}"
response = s3_downloader.list(s3_uri_to_mlmodel_file, self.sagemaker_session)
return len(response) > 0
file_path = os.path.join(path, MLFLOW_METADATA_FILE)
return os.path.isfile(file_path)
def _initialize_for_mlflow(self, artifact_path: str) -> None:
"""Initialize mlflow model artifacts, image uri and model server.
Args:
artifact_path (str): The path to the artifact store.
"""
if artifact_path.startswith("s3://"):
_download_s3_artifacts(artifact_path, self.model_path, self.sagemaker_session)
elif os.path.exists(artifact_path):
_copy_directory_contents(artifact_path, self.model_path)
else:
raise ValueError("Invalid path: %s" % artifact_path)
mlflow_model_metadata_path = _generate_mlflow_artifact_path(
self.model_path, MLFLOW_METADATA_FILE
)
# TODO: add validation on MLmodel file
mlflow_model_dependency_path = _generate_mlflow_artifact_path(
self.model_path, MLFLOW_PIP_DEPENDENCY_FILE
)
flavor_metadata = _get_all_flavor_metadata(mlflow_model_metadata_path)
deployment_flavor = _get_deployment_flavor(flavor_metadata)
self.model_server = self.model_server or _get_default_model_server_for_mlflow(
deployment_flavor
)
self.image_uri = self.image_uri or _select_container_for_mlflow_model(
mlflow_model_src_path=self.model_path,
deployment_flavor=deployment_flavor,
region=self.sagemaker_session.boto_region_name,
instance_type=self.instance_type,
)
self.env_vars.update({"MLFLOW_MODEL_FLAVOR": f"{deployment_flavor}"})
self.dependencies.update({"requirements": mlflow_model_dependency_path})
@_capture_telemetry("ModelBuilder.build_training_job")
def _collect_training_job_model_telemetry(self):
"""Dummy method to collect telemetry for training job handshake"""
return
@_capture_telemetry("ModelBuilder.build_model_trainer")
def _collect_model_trainer_model_telemetry(self):
"""Dummy method to collect telemetry for model trainer handshake"""
return
@_capture_telemetry("ModelBuilder.build_estimator")
def _collect_estimator_model_telemetry(self):
"""Dummy method to collect telemetry for estimator handshake"""
return
# Model Builder is a class to build the model for deployment.
# It supports three modes of deployment
# 1/ SageMaker Endpoint
# 2/ Local launch with container
# 3/ In process mode with Transformers server in beta release
@_capture_telemetry("ModelBuilder.build")
def build( # pylint: disable=R0911
self,
mode: Type[Mode] = None,
role_arn: str = None,
sagemaker_session: Optional[Session] = None,
) -> Type[Model]:
"""Create a deployable ``Model`` instance with ``ModelBuilder``.
Args:
mode (Type[Mode], optional): The mode. Defaults to ``None``.
role_arn (str, optional): The IAM role arn. Defaults to ``None``.
sagemaker_session (Optional[Session]): Session object which manages interactions
with Amazon SageMaker APIs and any other AWS services needed. If not specified, the
function creates one using the default AWS configuration chain.
Returns:
Type[Model]: A deployable ``Model`` object.
"""
self.modes = dict()
if mode:
self.mode = mode
if role_arn:
self.role_arn = role_arn
self.serve_settings = self._get_serve_setting()
if isinstance(self.model, TrainingJob):
self.model_path = self.model.model_artifacts.s3_model_artifacts
self.model = None
self._collect_training_job_model_telemetry()
elif isinstance(self.model, ModelTrainer):
self.model_path = self.model._latest_training_job.model_artifacts.s3_model_artifacts
self.model = None
self._collect_model_trainer_model_telemetry()
elif isinstance(self.model, Estimator):
self.model_path = self.model.output_path
self.model = None
self._collect_estimator_model_telemetry()
self.sagemaker_session = sagemaker_session or self.sagemaker_session or Session()
self.sagemaker_session.settings._local_download_dir = self.model_path
# DJL expects `HF_TOKEN` key. This allows backward compatibility
# until we deprecate HUGGING_FACE_HUB_TOKEN.
if self.env_vars.get("HUGGING_FACE_HUB_TOKEN") and not self.env_vars.get("HF_TOKEN"):
self.env_vars["HF_TOKEN"] = self.env_vars.get("HUGGING_FACE_HUB_TOKEN")
elif self.env_vars.get("HF_TOKEN") and not self.env_vars.get("HUGGING_FACE_HUB_TOKEN"):
self.env_vars["HUGGING_FACE_HUB_TOKEN"] = self.env_vars.get("HF_TOKEN")
self.sagemaker_session.settings._local_download_dir = self.model_path
# https://github.com/boto/botocore/blob/develop/botocore/useragent.py#L258
# decorate to_string() due to
# https://github.com/boto/botocore/blob/develop/botocore/client.py#L1014-L1015
client = self.sagemaker_session.sagemaker_client
client._user_agent_creator.to_string = self._user_agent_decorator(
self.sagemaker_session.sagemaker_client._user_agent_creator.to_string
)
self._is_custom_image_uri = self.image_uri is not None
self._handle_mlflow_input()
self._build_validations()
if (
not (isinstance(self.model, str) and self._is_jumpstart_model_id())
) and self.model_server:
self.built_model = self._build_for_model_server()
return self.built_model
if isinstance(self.model, str):
model_task = None
if self._is_jumpstart_model_id():
if self.mode == Mode.IN_PROCESS:
raise ValueError(
f"{self.mode} is not supported for Jumpstart models. "
"Please use LOCAL_CONTAINER mode to deploy a Jumpstart model"
" on your local machine."
)
self.model_hub = ModelHub.JUMPSTART
logger.debug("Building for Jumpstart model Id...")
self.built_model = self._build_for_jumpstart()
return self.built_model
if self.mode != Mode.IN_PROCESS:
if self._use_jumpstart_equivalent():
self.model_hub = ModelHub.JUMPSTART
logger.debug("Building for Jumpstart equiavalent model Id...")
self.built_model = self._build_for_jumpstart()
return self.built_model
self.model_hub = ModelHub.HUGGINGFACE
if self.model_metadata:
model_task = self.model_metadata.get("HF_TASK")
if self._is_djl():
return self._build_for_djl()
else:
hf_model_md = get_huggingface_model_metadata(
self.model, self.env_vars.get("HUGGING_FACE_HUB_TOKEN")
)
if model_task is None:
model_task = hf_model_md.get("pipeline_tag")
if self.schema_builder is None and model_task is not None:
self._hf_schema_builder_init(model_task)
if model_task == "text-generation":
self.built_model = self._build_for_tgi()
return self.built_model
if model_task in ["sentence-similarity", "feature-extraction"]:
self.built_model = self._build_for_tei()
return self.built_model
elif self._can_fit_on_single_gpu():
self.built_model = self._build_for_transformers()
return self.built_model
else:
self.built_model = self._build_for_transformers()
return self.built_model
# Set TorchServe as default model server
if not self.model_server:
self.model_server = ModelServer.TORCHSERVE
self.built_model = self._build_for_torchserve()
return self.built_model
raise ValueError("%s model server is not supported" % self.model_server)
def _build_validations(self):
"""Validations needed for model server overrides, or auto-detection or fallback"""
if self.inference_spec and self.model:
raise ValueError("Can only set one of the following: model, inference_spec.")
if self.image_uri and not is_1p_image_uri(self.image_uri) and self.model_server is None: