Skip to content

Commit ec1008e

Browse files
author
Github Actions
committed
Matthias Feurer: Update stale.yaml (#1142)
1 parent 6307fc1 commit ec1008e

File tree

53 files changed

+1043
-1173
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

53 files changed

+1043
-1173
lines changed
Binary file not shown.
Binary file not shown.
Loading
Loading

master/_sources/examples/20_basic/example_classification.rst.txt

+26-42
Large diffs are not rendered by default.

master/_sources/examples/20_basic/example_multilabel_classification.rst.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -235,7 +235,7 @@ Get the Score of the final ensemble
235235
236236
.. rst-class:: sphx-glr-timing
237237

238-
**Total running time of the script:** ( 0 minutes 15.196 seconds)
238+
**Total running time of the script:** ( 0 minutes 18.094 seconds)
239239

240240

241241
.. _sphx_glr_download_examples_20_basic_example_multilabel_classification.py:

master/_sources/examples/20_basic/example_regression.rst.txt

+5-5
Original file line numberDiff line numberDiff line change
@@ -130,21 +130,21 @@ Print the final ensemble constructed by auto-sklearn
130130

131131
.. code-block:: none
132132
133-
[(0.640000, SimpleRegressionPipeline({'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'regressor:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01, 'regressor:random_forest:bootstrap': 'True', 'regressor:random_forest:criterion': 'mse', 'regressor:random_forest:max_depth': 'None', 'regressor:random_forest:max_features': 1.0, 'regressor:random_forest:max_leaf_nodes': 'None', 'regressor:random_forest:min_impurity_decrease': 0.0, 'regressor:random_forest:min_samples_leaf': 1, 'regressor:random_forest:min_samples_split': 2, 'regressor:random_forest:min_weight_fraction_leaf': 0.0},
133+
[(0.760000, SimpleRegressionPipeline({'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'no_preprocessing', 'regressor:__choice__': 'random_forest', 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01, 'regressor:random_forest:bootstrap': 'True', 'regressor:random_forest:criterion': 'mse', 'regressor:random_forest:max_depth': 'None', 'regressor:random_forest:max_features': 1.0, 'regressor:random_forest:max_leaf_nodes': 'None', 'regressor:random_forest:min_impurity_decrease': 0.0, 'regressor:random_forest:min_samples_leaf': 1, 'regressor:random_forest:min_samples_split': 2, 'regressor:random_forest:min_weight_fraction_leaf': 0.0},
134134
dataset_properties={
135135
'task': 4,
136136
'sparse': False,
137137
'multioutput': False,
138138
'target_type': 'regression',
139139
'signed': False})),
140-
(0.200000, SimpleRegressionPipeline({'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:__choice__': 'polynomial', 'regressor:__choice__': 'gaussian_process', 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'True', 'feature_preprocessor:polynomial:interaction_only': 'True', 'regressor:gaussian_process:alpha': 0.037731974209709904, 'regressor:gaussian_process:thetaL': 5.002213042554931e-07, 'regressor:gaussian_process:thetaU': 22409.945864393645},
140+
(0.220000, SimpleRegressionPipeline({'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'polynomial', 'regressor:__choice__': 'ard_regression', 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'True', 'feature_preprocessor:polynomial:interaction_only': 'False', 'regressor:ard_regression:alpha_1': 0.0003701926442639788, 'regressor:ard_regression:alpha_2': 2.2118001735899097e-07, 'regressor:ard_regression:fit_intercept': 'True', 'regressor:ard_regression:lambda_1': 1.2037591637980971e-06, 'regressor:ard_regression:lambda_2': 4.358378124977852e-09, 'regressor:ard_regression:n_iter': 300, 'regressor:ard_regression:threshold_lambda': 1136.5286041327277, 'regressor:ard_regression:tol': 0.021944240404849075},
141141
dataset_properties={
142142
'task': 4,
143143
'sparse': False,
144144
'multioutput': False,
145145
'target_type': 'regression',
146146
'signed': False})),
147-
(0.160000, SimpleRegressionPipeline({'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:__choice__': 'polynomial', 'regressor:__choice__': 'ard_regression', 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'True', 'feature_preprocessor:polynomial:interaction_only': 'False', 'regressor:ard_regression:alpha_1': 0.0003701926442639788, 'regressor:ard_regression:alpha_2': 2.2118001735899097e-07, 'regressor:ard_regression:fit_intercept': 'True', 'regressor:ard_regression:lambda_1': 1.2037591637980971e-06, 'regressor:ard_regression:lambda_2': 4.358378124977852e-09, 'regressor:ard_regression:n_iter': 300, 'regressor:ard_regression:threshold_lambda': 1136.5286041327277, 'regressor:ard_regression:tol': 0.021944240404849075},
147+
(0.020000, SimpleRegressionPipeline({'data_preprocessing:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessing:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessing:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessing:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:__choice__': 'select_rates_regression', 'regressor:__choice__': 'extra_trees', 'data_preprocessing:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.019566163649872924, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_max': 0.7200608810425068, 'data_preprocessing:numerical_transformer:rescaling:robust_scaler:q_min': 0.22968043330398744, 'feature_preprocessor:select_rates_regression:alpha': 0.18539282936320728, 'feature_preprocessor:select_rates_regression:mode': 'fwe', 'feature_preprocessor:select_rates_regression:score_func': 'f_regression', 'regressor:extra_trees:bootstrap': 'False', 'regressor:extra_trees:criterion': 'mae', 'regressor:extra_trees:max_depth': 'None', 'regressor:extra_trees:max_features': 0.9029989558220115, 'regressor:extra_trees:max_leaf_nodes': 'None', 'regressor:extra_trees:min_impurity_decrease': 0.0, 'regressor:extra_trees:min_samples_leaf': 1, 'regressor:extra_trees:min_samples_split': 2, 'regressor:extra_trees:min_weight_fraction_leaf': 0.0},
148148
dataset_properties={
149149
'task': 4,
150150
'sparse': False,
@@ -178,15 +178,15 @@ Get the Score of the final ensemble
178178

179179
.. code-block:: none
180180
181-
R2 score: 0.904046583977308
181+
R2 score: 0.9018056173149241
182182
183183
184184
185185
186186
187187
.. rst-class:: sphx-glr-timing
188188

189-
**Total running time of the script:** ( 1 minutes 56.775 seconds)
189+
**Total running time of the script:** ( 1 minutes 58.065 seconds)
190190

191191

192192
.. _sphx_glr_download_examples_20_basic_example_regression.py:

master/_sources/examples/20_basic/sg_execution_times.rst.txt

+4-4
Original file line numberDiff line numberDiff line change
@@ -5,12 +5,12 @@
55

66
Computation times
77
=================
8-
**04:08.861** total execution time for **examples_20_basic** files:
8+
**04:19.705** total execution time for **examples_20_basic** files:
99

1010
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
11-
| :ref:`sphx_glr_examples_20_basic_example_classification.py` (``example_classification.py``) | 01:56.890 | 0.0 MB |
11+
| :ref:`sphx_glr_examples_20_basic_example_classification.py` (``example_classification.py``) | 02:03.547 | 0.0 MB |
1212
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
13-
| :ref:`sphx_glr_examples_20_basic_example_regression.py` (``example_regression.py``) | 01:56.775 | 0.0 MB |
13+
| :ref:`sphx_glr_examples_20_basic_example_regression.py` (``example_regression.py``) | 01:58.065 | 0.0 MB |
1414
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
15-
| :ref:`sphx_glr_examples_20_basic_example_multilabel_classification.py` (``example_multilabel_classification.py``) | 00:15.196 | 0.0 MB |
15+
| :ref:`sphx_glr_examples_20_basic_example_multilabel_classification.py` (``example_multilabel_classification.py``) | 00:18.094 | 0.0 MB |
1616
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+

master/_sources/examples/40_advanced/example_calc_multiple_metrics.rst.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -173,7 +173,7 @@ Get the Score of the final ensemble
173173
174174
.. rst-class:: sphx-glr-timing
175175

176-
**Total running time of the script:** ( 1 minutes 57.927 seconds)
176+
**Total running time of the script:** ( 1 minutes 57.514 seconds)
177177

178178

179179
.. _sphx_glr_download_examples_40_advanced_example_calc_multiple_metrics.py:

master/_sources/examples/40_advanced/example_feature_types.rst.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -158,7 +158,7 @@ Get the Score of the final ensemble
158158
159159
.. rst-class:: sphx-glr-timing
160160

161-
**Total running time of the script:** ( 0 minutes 12.632 seconds)
161+
**Total running time of the script:** ( 0 minutes 16.211 seconds)
162162

163163

164164
.. _sphx_glr_download_examples_40_advanced_example_feature_types.py:

0 commit comments

Comments
 (0)