Skip to content

Commit a748581

Browse files
author
Github Actions
committed
Eric Pedley: Changed deprecated DataFrame.append to pd.concat to fix warning (#1487)
1 parent 159cf70 commit a748581

File tree

73 files changed

+2058
-3331
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

73 files changed

+2058
-3331
lines changed
Binary file not shown.
Binary file not shown.
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading

development/_sources/examples/20_basic/example_classification.rst.txt

+25-29
Original file line numberDiff line numberDiff line change
@@ -93,10 +93,6 @@ Build and fit a classifier
9393

9494
.. code-block:: none
9595
96-
/home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/metalearning/meta_base.py:76: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
97-
self.metafeatures = self.metafeatures.append(metafeatures)
98-
/home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/metalearning/meta_base.py:80: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
99-
self.algorithm_runs[metric].append(runs)
10096
10197
AutoSklearnClassifier(per_run_time_limit=30, time_left_for_this_task=120,
10298
tmp_folder='/tmp/autosklearn_classification_example_tmp')
@@ -125,29 +121,29 @@ View the models found by auto-sklearn
125121

126122
.. code-block:: none
127123
128-
rank ensemble_weight type cost duration
129-
model_id
130-
7 1 0.10 extra_trees 0.014184 1.508070
131-
16 2 0.04 gradient_boosting 0.021277 1.069927
132-
2 7 0.02 random_forest 0.028369 1.649826
133-
3 9 0.08 mlp 0.028369 0.929094
134-
6 8 0.02 mlp 0.028369 1.068695
135-
11 10 0.04 random_forest 0.028369 2.018981
136-
14 6 0.04 mlp 0.028369 1.486160
137-
19 4 0.12 extra_trees 0.028369 2.764316
138-
22 3 0.06 gradient_boosting 0.028369 1.120712
139-
31 5 0.04 extra_trees 0.028369 1.656933
140-
8 12 0.06 random_forest 0.035461 1.894322
141-
12 11 0.02 gradient_boosting 0.035461 1.260170
142-
17 13 0.02 gradient_boosting 0.035461 1.564270
143-
18 14 0.02 random_forest 0.035461 1.905224
144-
9 15 0.06 extra_trees 0.042553 1.779394
145-
30 16 0.12 liblinear_svc 0.042553 0.957406
146-
15 17 0.02 mlp 0.049645 3.210093
147-
28 18 0.04 mlp 0.056738 0.968477
148-
29 19 0.04 extra_trees 0.056738 1.733633
149-
20 20 0.02 passive_aggressive 0.078014 0.758144
150-
32 21 0.02 extra_trees 0.106383 2.939105
124+
rank ensemble_weight type cost duration
125+
model_id
126+
7 1 0.10 extra_trees 0.014184 2.004601
127+
31 2 0.04 extra_trees 0.014184 2.326990
128+
16 4 0.04 gradient_boosting 0.021277 1.369266
129+
21 3 0.02 extra_trees 0.021277 1.868113
130+
2 5 0.04 random_forest 0.028369 2.128209
131+
3 6 0.10 mlp 0.028369 1.352958
132+
6 8 0.02 mlp 0.028369 1.477564
133+
14 10 0.10 mlp 0.028369 2.594337
134+
19 9 0.06 extra_trees 0.028369 3.375372
135+
26 7 0.02 extra_trees 0.028369 2.810159
136+
5 13 0.02 random_forest 0.035461 2.558748
137+
17 12 0.04 gradient_boosting 0.035461 2.110427
138+
18 11 0.02 random_forest 0.035461 2.490679
139+
32 14 0.10 k_nearest_neighbors 0.035461 1.093234
140+
9 15 0.02 extra_trees 0.042553 2.325613
141+
15 17 0.02 mlp 0.049645 5.229511
142+
28 16 0.06 extra_trees 0.049645 2.560032
143+
4 18 0.04 mlp 0.056738 2.125066
144+
24 19 0.06 random_forest 0.070922 2.184559
145+
29 20 0.06 decision_tree 0.070922 1.369401
146+
20 21 0.02 passive_aggressive 0.078014 0.954702
151147
152148
153149
@@ -203,15 +199,15 @@ Get the Score of the final ensemble
203199

204200
.. code-block:: none
205201
206-
Accuracy score: 0.951048951048951
202+
Accuracy score: 0.958041958041958
207203
208204
209205
210206
211207
212208
.. rst-class:: sphx-glr-timing
213209

214-
**Total running time of the script:** ( 2 minutes 5.836 seconds)
210+
**Total running time of the script:** ( 2 minutes 2.609 seconds)
215211

216212

217213
.. _sphx_glr_download_examples_20_basic_example_classification.py:

development/_sources/examples/20_basic/example_multilabel_classification.rst.txt

+2-2
Original file line numberDiff line numberDiff line change
@@ -155,7 +155,7 @@ View the models found by auto-sklearn
155155
156156
rank ensemble_weight type cost duration
157157
model_id
158-
2 1 1.0 random_forest 0.447294 3.379694
158+
2 1 1.0 random_forest 0.447294 4.207705
159159
160160
161161
@@ -257,7 +257,7 @@ Get the Score of the final ensemble
257257
258258
.. rst-class:: sphx-glr-timing
259259

260-
**Total running time of the script:** ( 0 minutes 14.872 seconds)
260+
**Total running time of the script:** ( 0 minutes 18.614 seconds)
261261

262262

263263
.. _sphx_glr_download_examples_20_basic_example_multilabel_classification.py:

development/_sources/examples/20_basic/example_multioutput_regression.rst.txt

+7-6
Original file line numberDiff line numberDiff line change
@@ -123,10 +123,11 @@ View the models found by auto-sklearn
123123

124124
.. code-block:: none
125125
126-
rank ensemble_weight type cost duration
127-
model_id
128-
2 1 0.84 random_forest 0.154940 2.282101
129-
4 2 0.16 extra_trees 0.224544 1.123610
126+
rank ensemble_weight type cost duration
127+
model_id
128+
2 1 0.82 random_forest 0.135431 2.700041
129+
17 2 0.14 decision_tree 0.290778 1.422128
130+
10 3 0.04 k_nearest_neighbors 0.524106 0.694775
130131
131132
132133
@@ -183,7 +184,7 @@ Get the Score of the final ensemble
183184

184185
.. code-block:: none
185186
186-
R2 score: 0.8610416148903628
187+
R2 score: 0.864934517601886
187188
188189
189190
@@ -436,7 +437,7 @@ Get the configuration space
436437
437438
.. rst-class:: sphx-glr-timing
438439

439-
**Total running time of the script:** ( 2 minutes 3.410 seconds)
440+
**Total running time of the script:** ( 1 minutes 54.464 seconds)
440441

441442

442443
.. _sphx_glr_download_examples_20_basic_example_multioutput_regression.py:

development/_sources/examples/20_basic/example_regression.rst.txt

+11-13
Original file line numberDiff line numberDiff line change
@@ -94,10 +94,6 @@ Build and fit a regressor
9494

9595
.. code-block:: none
9696
97-
/home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/metalearning/meta_base.py:76: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
98-
self.metafeatures = self.metafeatures.append(metafeatures)
99-
/home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/metalearning/meta_base.py:80: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
100-
self.algorithm_runs[metric].append(runs)
10197
10298
AutoSklearnRegressor(per_run_time_limit=30, time_left_for_this_task=120,
10399
tmp_folder='/tmp/autosklearn_regression_example_tmp')
@@ -126,12 +122,14 @@ View the models found by auto-sklearn
126122

127123
.. code-block:: none
128124
129-
rank ensemble_weight type cost duration
130-
model_id
131-
31 1 0.48 ard_regression 0.428169 0.818530
132-
25 2 0.26 sgd 0.436679 0.695193
133-
33 3 0.20 liblinear_svr 0.472547 0.804050
134-
29 4 0.06 ard_regression 0.493390 0.697902
125+
rank ensemble_weight type cost duration
126+
model_id
127+
25 1 0.38 sgd 0.436679 0.908823
128+
6 2 0.40 ard_regression 0.455042 0.921170
129+
27 3 0.02 ard_regression 0.462249 0.921811
130+
29 4 0.16 ard_regression 0.493390 0.878443
131+
11 5 0.02 random_forest 0.507400 10.554423
132+
7 6 0.02 gradient_boosting 0.518673 1.673570
135133
136134
137135
@@ -194,8 +192,8 @@ predicting the data mean has an R2 score of 0.
194192

195193
.. code-block:: none
196194
197-
Train R2 score: 0.5922043282790412
198-
Test R2 score: 0.4073119977311549
195+
Train R2 score: 0.5845958689841146
196+
Test R2 score: 0.3969087782855073
199197
200198
201199
@@ -240,7 +238,7 @@ the true value).
240238

241239
.. rst-class:: sphx-glr-timing
242240

243-
**Total running time of the script:** ( 2 minutes 0.614 seconds)
241+
**Total running time of the script:** ( 1 minutes 55.340 seconds)
244242

245243

246244
.. _sphx_glr_download_examples_20_basic_example_regression.py:

development/_sources/examples/20_basic/sg_execution_times.rst.txt

+5-5
Original file line numberDiff line numberDiff line change
@@ -5,14 +5,14 @@
55

66
Computation times
77
=================
8-
**06:24.733** total execution time for **examples_20_basic** files:
8+
**06:11.027** total execution time for **examples_20_basic** files:
99

1010
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
11-
| :ref:`sphx_glr_examples_20_basic_example_classification.py` (``example_classification.py``) | 02:05.836 | 0.0 MB |
11+
| :ref:`sphx_glr_examples_20_basic_example_classification.py` (``example_classification.py``) | 02:02.609 | 0.0 MB |
1212
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
13-
| :ref:`sphx_glr_examples_20_basic_example_multioutput_regression.py` (``example_multioutput_regression.py``) | 02:03.410 | 0.0 MB |
13+
| :ref:`sphx_glr_examples_20_basic_example_regression.py` (``example_regression.py``) | 01:55.340 | 0.0 MB |
1414
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
15-
| :ref:`sphx_glr_examples_20_basic_example_regression.py` (``example_regression.py``) | 02:00.614 | 0.0 MB |
15+
| :ref:`sphx_glr_examples_20_basic_example_multioutput_regression.py` (``example_multioutput_regression.py``) | 01:54.464 | 0.0 MB |
1616
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
17-
| :ref:`sphx_glr_examples_20_basic_example_multilabel_classification.py` (``example_multilabel_classification.py``) | 00:14.872 | 0.0 MB |
17+
| :ref:`sphx_glr_examples_20_basic_example_multilabel_classification.py` (``example_multilabel_classification.py``) | 00:18.614 | 0.0 MB |
1818
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+

0 commit comments

Comments
 (0)