@@ -121,13 +121,12 @@ View the models found by auto-sklearn
121
121
122
122
.. code-block :: none
123
123
124
- rank ensemble_weight type cost duration
125
- model_id
126
- 25 1 0.46 sgd 0.436679 0.717185
127
- 6 2 0.32 ard_regression 0.455042 0.729688
128
- 27 3 0.14 ard_regression 0.462249 0.721807
129
- 11 4 0.02 random_forest 0.507400 10.729273
130
- 7 5 0.06 gradient_boosting 0.518673 1.277604
124
+ rank ensemble_weight type cost duration
125
+ model_id
126
+ 25 1 0.44 sgd 0.436679 0.605110
127
+ 6 2 0.34 ard_regression 0.455042 0.629450
128
+ 39 3 0.18 ard_regression 0.474807 0.603827
129
+ 7 4 0.04 gradient_boosting 0.518673 1.111901
131
130
132
131
133
132
@@ -155,62 +154,51 @@ Print the final ensemble constructed by auto-sklearn
155
154
.. code-block :: none
156
155
157
156
{ 6: { 'cost': 0.4550418898836528,
158
- 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f1e54425c40 >,
159
- 'ensemble_weight': 0.32 ,
160
- 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f1e54431580 >,
157
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fb34b258970 >,
158
+ 'ensemble_weight': 0.34 ,
159
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fb34aba8310 >,
161
160
'model_id': 6,
162
161
'rank': 2,
163
- 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f1e54431fd0 >,
162
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fb34aba8a60 >,
164
163
'sklearn_regressor': ARDRegression(alpha_1=0.0003701926442639788, alpha_2=2.2118001735899097e-07,
165
164
copy_X=False, lambda_1=1.2037591637980971e-06,
166
165
lambda_2=4.358378124977852e-09,
167
166
threshold_lambda=1136.5286041327277, tol=0.021944240404849075)},
168
167
7: { 'cost': 0.5186726734789994,
169
- 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f1e52b1dc40 >,
170
- 'ensemble_weight': 0.06 ,
171
- 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f1e52b2e040 >,
168
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fb347cca280 >,
169
+ 'ensemble_weight': 0.04 ,
170
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fb347b8ca30 >,
172
171
'model_id': 7,
173
- 'rank': 5 ,
174
- 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f1e52b2e790 >,
172
+ 'rank': 4 ,
173
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fb347b8c820 >,
175
174
'sklearn_regressor': HistGradientBoostingRegressor(l2_regularization=1.8428972335335263e-10,
176
175
learning_rate=0.012607824914758717, max_iter=512,
177
176
max_leaf_nodes=10, min_samples_leaf=8,
178
177
n_iter_no_change=0, random_state=1,
179
178
validation_fraction=None, warm_start=True)},
180
- 11: { 'cost': 0.5073997164657239,
181
- 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f1e54207a30>,
182
- 'ensemble_weight': 0.02,
183
- 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f1e4ed21820>,
184
- 'model_id': 11,
185
- 'rank': 4,
186
- 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f1e4ed21dc0>,
187
- 'sklearn_regressor': RandomForestRegressor(bootstrap=False, criterion='mae',
188
- max_features=0.6277363920171745, min_samples_leaf=6,
189
- min_samples_split=15, n_estimators=512, n_jobs=1,
190
- random_state=1, warm_start=True)},
191
179
25: { 'cost': 0.43667876507897496,
192
- 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f1e542bbe80 >,
193
- 'ensemble_weight': 0.46 ,
194
- 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f1e541b3c70 >,
180
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fb34aac2880 >,
181
+ 'ensemble_weight': 0.44 ,
182
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fb347ccad30 >,
195
183
'model_id': 25,
196
184
'rank': 1,
197
- 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f1e541b3310 >,
185
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fb345820c70 >,
198
186
'sklearn_regressor': SGDRegressor(alpha=0.0006517033225329654, epsilon=0.012150149892783745,
199
187
eta0=0.016444224834275295, l1_ratio=1.7462342366289323e-09,
200
188
loss='epsilon_insensitive', max_iter=16, penalty='elasticnet',
201
189
power_t=0.21521743568582094, random_state=1,
202
190
tol=0.002431731981071206, warm_start=True)},
203
- 27 : { 'cost': 0.4622486119001967 ,
204
- 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f1e4ed322e0 >,
205
- 'ensemble_weight': 0.14 ,
206
- 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f1e52b41880 >,
207
- 'model_id': 27 ,
191
+ 39 : { 'cost': 0.4748068089650166 ,
192
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fb34b258eb0 >,
193
+ 'ensemble_weight': 0.18 ,
194
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fb34674f6a0 >,
195
+ 'model_id': 39 ,
208
196
'rank': 3,
209
- 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f1e5443d3d0 >,
210
- 'sklearn_regressor': ARDRegression(alpha_1=2.7664515192592053e-05 , alpha_2=9.504988116581138e-07 ,
211
- copy_X=False, lambda_1=6.50650698230178e-09 ,
212
- lambda_2=4.238533890074848e-07 ,
213
- threshold_lambda=78251.58542976103 , tol=0.0007301343236220855 )}}
197
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fb34674fa90 >,
198
+ 'sklearn_regressor': ARDRegression(alpha_1=0.0005012365297609799 , alpha_2=3.025360750168211e-08 ,
199
+ copy_X=False, lambda_1=4.9749646614525684e-05 ,
200
+ lambda_2=3.2368037115065363e-10 ,
201
+ threshold_lambda=18669.665899307194 , tol=0.0012624032013298571 )}}
214
202
215
203
216
204
@@ -244,8 +232,8 @@ predicting the data mean has an R2 score of 0.
244
232
245
233
.. code-block :: none
246
234
247
- Train R2 score: 0.5944780427522034
248
- Test R2 score: 0.3959585042866587
235
+ Train R2 score: 0.5855373845454157
236
+ Test R2 score: 0.39879073225079487
249
237
250
238
251
239
@@ -290,7 +278,7 @@ the true value).
290
278
291
279
.. rst-class :: sphx-glr-timing
292
280
293
- **Total running time of the script: ** ( 1 minutes 55.698 seconds)
281
+ **Total running time of the script: ** ( 1 minutes 55.959 seconds)
294
282
295
283
296
284
.. _sphx_glr_download_examples_20_basic_example_regression.py :
0 commit comments