Skip to content

Commit 07cd33b

Browse files
author
Github Actions
committed
Eddie Bergman: Remove flaky dep (#1361)
1 parent 68afb24 commit 07cd33b

File tree

86 files changed

+3619
-3083
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

86 files changed

+3619
-3083
lines changed

development/.buildinfo

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
11
# Sphinx build info version 1
22
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
3-
config: 1281a8de7e72cc26a3b0fce1416780a7
3+
config: 8a26f7fbaa1576935d6b4916c5b79de9
44
tags: 645f666f9bcd5a90fca523b33c5a78b7
Binary file not shown.
Binary file not shown.
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading

development/_modules/autosklearn/estimators.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -1344,7 +1344,7 @@ <h1>Source code for autosklearn.estimators</h1><div class="highlight"><pre>
13441344

13451345
</p>
13461346
<p>
1347-
&copy; Copyright 2014-2021, Machine Learning Professorship Freiburg.<br/>
1347+
&copy; Copyright 2014-2022, Machine Learning Professorship Freiburg.<br/>
13481348
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 4.2.0.<br/>
13491349
</p>
13501350
</div>

development/_modules/autosklearn/experimental/askl2.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -593,7 +593,7 @@ <h1>Source code for autosklearn.experimental.askl2</h1><div class="highlight"><p
593593

594594
</p>
595595
<p>
596-
&copy; Copyright 2014-2021, Machine Learning Professorship Freiburg.<br/>
596+
&copy; Copyright 2014-2022, Machine Learning Professorship Freiburg.<br/>
597597
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 4.2.0.<br/>
598598
</p>
599599
</div>

development/_modules/autosklearn/metrics.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -700,7 +700,7 @@ <h1>Source code for autosklearn.metrics</h1><div class="highlight"><pre>
700700

701701
</p>
702702
<p>
703-
&copy; Copyright 2014-2021, Machine Learning Professorship Freiburg.<br/>
703+
&copy; Copyright 2014-2022, Machine Learning Professorship Freiburg.<br/>
704704
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 4.2.0.<br/>
705705
</p>
706706
</div>

development/_modules/autosklearn/pipeline/components/base.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -561,7 +561,7 @@ <h1>Source code for autosklearn.pipeline.components.base</h1><div class="highlig
561561

562562
</p>
563563
<p>
564-
&copy; Copyright 2014-2021, Machine Learning Professorship Freiburg.<br/>
564+
&copy; Copyright 2014-2022, Machine Learning Professorship Freiburg.<br/>
565565
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 4.2.0.<br/>
566566
</p>
567567
</div>

development/_modules/autosklearn/pipeline/components/classification.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -278,7 +278,7 @@ <h1>Source code for autosklearn.pipeline.components.classification</h1><div clas
278278

279279
</p>
280280
<p>
281-
&copy; Copyright 2014-2021, Machine Learning Professorship Freiburg.<br/>
281+
&copy; Copyright 2014-2022, Machine Learning Professorship Freiburg.<br/>
282282
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 4.2.0.<br/>
283283
</p>
284284
</div>

development/_modules/autosklearn/pipeline/components/feature_preprocessing.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -256,7 +256,7 @@ <h1>Source code for autosklearn.pipeline.components.feature_preprocessing</h1><d
256256

257257
</p>
258258
<p>
259-
&copy; Copyright 2014-2021, Machine Learning Professorship Freiburg.<br/>
259+
&copy; Copyright 2014-2022, Machine Learning Professorship Freiburg.<br/>
260260
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 4.2.0.<br/>
261261
</p>
262262
</div>

development/_modules/autosklearn/pipeline/components/regression.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -264,7 +264,7 @@ <h1>Source code for autosklearn.pipeline.components.regression</h1><div class="h
264264

265265
</p>
266266
<p>
267-
&copy; Copyright 2014-2021, Machine Learning Professorship Freiburg.<br/>
267+
&copy; Copyright 2014-2022, Machine Learning Professorship Freiburg.<br/>
268268
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 4.2.0.<br/>
269269
</p>
270270
</div>

development/_modules/index.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -133,7 +133,7 @@ <h1>All modules for which code is available</h1>
133133

134134
</p>
135135
<p>
136-
&copy; Copyright 2014-2021, Machine Learning Professorship Freiburg.<br/>
136+
&copy; Copyright 2014-2022, Machine Learning Professorship Freiburg.<br/>
137137
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 4.2.0.<br/>
138138
</p>
139139
</div>

development/_sources/examples/20_basic/example_classification.rst.txt

+228-196
Large diffs are not rendered by default.

development/_sources/examples/20_basic/example_multilabel_classification.rst.txt

+5-5
Original file line numberDiff line numberDiff line change
@@ -155,7 +155,7 @@ View the models found by auto-sklearn
155155
156156
rank ensemble_weight type cost duration
157157
model_id
158-
2 1 1.0 random_forest 0.447294 3.74924
158+
2 1 1.0 random_forest 0.447294 3.220523
159159
160160
161161
@@ -183,11 +183,11 @@ Print the final ensemble constructed by auto-sklearn
183183
.. code-block:: none
184184
185185
{ 2: { 'balancing': Balancing(random_state=1),
186-
'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7f1e52b9a730>,
186+
'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fb34b449280>,
187187
'cost': 0.4472941828699525,
188-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f1e54895d30>,
188+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fb347b6cf70>,
189189
'ensemble_weight': 1.0,
190-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f1e52b7d280>,
190+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fb34b4497f0>,
191191
'model_id': 2,
192192
'rank': 1,
193193
'sklearn_classifier': RandomForestClassifier(max_features=15, n_estimators=512, n_jobs=1,
@@ -264,7 +264,7 @@ Get the Score of the final ensemble
264264
265265
.. rst-class:: sphx-glr-timing
266266

267-
**Total running time of the script:** ( 0 minutes 14.270 seconds)
267+
**Total running time of the script:** ( 0 minutes 12.221 seconds)
268268

269269

270270
.. _sphx_glr_download_examples_20_basic_example_multilabel_classification.py:

development/_sources/examples/20_basic/example_multioutput_regression.rst.txt

+27-40
Original file line numberDiff line numberDiff line change
@@ -123,12 +123,10 @@ View the models found by auto-sklearn
123123

124124
.. code-block:: none
125125
126-
rank ensemble_weight type cost duration
127-
model_id
128-
2 1 0.78 random_forest 0.127023 2.588092
129-
5 2 0.16 k_nearest_neighbors 0.204675 0.498047
130-
18 3 0.04 k_nearest_neighbors 0.459024 0.509598
131-
14 4 0.02 k_nearest_neighbors 0.509078 1.071782
126+
rank ensemble_weight type cost duration
127+
model_id
128+
18 1 0.8 gaussian_process 0.000007 2.596252
129+
16 2 0.2 gaussian_process 0.000015 7.973967
132130
133131
134132
@@ -155,39 +153,28 @@ Print the final ensemble constructed by auto-sklearn
155153

156154
.. code-block:: none
157155
158-
{ 2: { 'cost': 0.12702266427368414,
159-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f1e544680d0>,
160-
'ensemble_weight': 0.78,
161-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f1e54468970>,
162-
'model_id': 2,
163-
'rank': 1,
164-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f1e54468400>,
165-
'sklearn_regressor': RandomForestRegressor(max_features=1.0, n_estimators=512, n_jobs=1,
166-
random_state=1, warm_start=True)},
167-
5: { 'cost': 0.20467501696131973,
168-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f1e543d8640>,
169-
'ensemble_weight': 0.16,
170-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f1e52b49af0>,
171-
'model_id': 5,
172-
'rank': 2,
173-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f1e52b49e50>,
174-
'sklearn_regressor': KNeighborsRegressor(n_neighbors=14, p=1)},
175-
14: { 'cost': 0.5090778359252635,
176-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f1e4ee6c700>,
177-
'ensemble_weight': 0.02,
178-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f1e50a110a0>,
179-
'model_id': 14,
180-
'rank': 4,
181-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f1e50a11610>,
182-
'sklearn_regressor': KNeighborsRegressor(n_neighbors=1, p=1, weights='distance')},
183-
18: { 'cost': 0.4590244851288239,
184-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f1e52cd0d90>,
185-
'ensemble_weight': 0.04,
186-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f1e50a419d0>,
156+
{ 16: { 'cost': 1.453992678268623e-05,
157+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fb34aacdd90>,
158+
'ensemble_weight': 0.2,
159+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fb347b2b220>,
160+
'model_id': 16,
161+
'rank': 2,
162+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fb347d22910>,
163+
'sklearn_regressor': GaussianProcessRegressor(alpha=6.883531961818898e-12,
164+
kernel=RBF(length_scale=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
165+
n_restarts_optimizer=10, normalize_y=True,
166+
random_state=1)},
167+
18: { 'cost': 6.532830369665454e-06,
168+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fb3459dc730>,
169+
'ensemble_weight': 0.8,
170+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fb34aacdbe0>,
187171
'model_id': 18,
188-
'rank': 3,
189-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f1e50a41f10>,
190-
'sklearn_regressor': KNeighborsRegressor(n_neighbors=1, p=1, weights='distance')}}
172+
'rank': 1,
173+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fb34aacda00>,
174+
'sklearn_regressor': GaussianProcessRegressor(alpha=9.054973819256506e-06,
175+
kernel=RBF(length_scale=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
176+
n_restarts_optimizer=10, normalize_y=True,
177+
random_state=1)}}
191178
192179
193180
@@ -215,7 +202,7 @@ Get the Score of the final ensemble
215202

216203
.. code-block:: none
217204
218-
R2 score: 0.8669192933582243
205+
R2 score: 0.999993617907473
219206
220207
221208
@@ -438,7 +425,7 @@ Get the configuration space
438425
439426
.. rst-class:: sphx-glr-timing
440427

441-
**Total running time of the script:** ( 1 minutes 54.549 seconds)
428+
**Total running time of the script:** ( 1 minutes 57.174 seconds)
442429

443430

444431
.. _sphx_glr_download_examples_20_basic_example_multioutput_regression.py:

development/_sources/examples/20_basic/example_regression.rst.txt

+32-44
Original file line numberDiff line numberDiff line change
@@ -121,13 +121,12 @@ View the models found by auto-sklearn
121121

122122
.. code-block:: none
123123
124-
rank ensemble_weight type cost duration
125-
model_id
126-
25 1 0.46 sgd 0.436679 0.717185
127-
6 2 0.32 ard_regression 0.455042 0.729688
128-
27 3 0.14 ard_regression 0.462249 0.721807
129-
11 4 0.02 random_forest 0.507400 10.729273
130-
7 5 0.06 gradient_boosting 0.518673 1.277604
124+
rank ensemble_weight type cost duration
125+
model_id
126+
25 1 0.44 sgd 0.436679 0.605110
127+
6 2 0.34 ard_regression 0.455042 0.629450
128+
39 3 0.18 ard_regression 0.474807 0.603827
129+
7 4 0.04 gradient_boosting 0.518673 1.111901
131130
132131
133132
@@ -155,62 +154,51 @@ Print the final ensemble constructed by auto-sklearn
155154
.. code-block:: none
156155
157156
{ 6: { 'cost': 0.4550418898836528,
158-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f1e54425c40>,
159-
'ensemble_weight': 0.32,
160-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f1e54431580>,
157+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fb34b258970>,
158+
'ensemble_weight': 0.34,
159+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fb34aba8310>,
161160
'model_id': 6,
162161
'rank': 2,
163-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f1e54431fd0>,
162+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fb34aba8a60>,
164163
'sklearn_regressor': ARDRegression(alpha_1=0.0003701926442639788, alpha_2=2.2118001735899097e-07,
165164
copy_X=False, lambda_1=1.2037591637980971e-06,
166165
lambda_2=4.358378124977852e-09,
167166
threshold_lambda=1136.5286041327277, tol=0.021944240404849075)},
168167
7: { 'cost': 0.5186726734789994,
169-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f1e52b1dc40>,
170-
'ensemble_weight': 0.06,
171-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f1e52b2e040>,
168+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fb347cca280>,
169+
'ensemble_weight': 0.04,
170+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fb347b8ca30>,
172171
'model_id': 7,
173-
'rank': 5,
174-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f1e52b2e790>,
172+
'rank': 4,
173+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fb347b8c820>,
175174
'sklearn_regressor': HistGradientBoostingRegressor(l2_regularization=1.8428972335335263e-10,
176175
learning_rate=0.012607824914758717, max_iter=512,
177176
max_leaf_nodes=10, min_samples_leaf=8,
178177
n_iter_no_change=0, random_state=1,
179178
validation_fraction=None, warm_start=True)},
180-
11: { 'cost': 0.5073997164657239,
181-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f1e54207a30>,
182-
'ensemble_weight': 0.02,
183-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f1e4ed21820>,
184-
'model_id': 11,
185-
'rank': 4,
186-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f1e4ed21dc0>,
187-
'sklearn_regressor': RandomForestRegressor(bootstrap=False, criterion='mae',
188-
max_features=0.6277363920171745, min_samples_leaf=6,
189-
min_samples_split=15, n_estimators=512, n_jobs=1,
190-
random_state=1, warm_start=True)},
191179
25: { 'cost': 0.43667876507897496,
192-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f1e542bbe80>,
193-
'ensemble_weight': 0.46,
194-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f1e541b3c70>,
180+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fb34aac2880>,
181+
'ensemble_weight': 0.44,
182+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fb347ccad30>,
195183
'model_id': 25,
196184
'rank': 1,
197-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f1e541b3310>,
185+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fb345820c70>,
198186
'sklearn_regressor': SGDRegressor(alpha=0.0006517033225329654, epsilon=0.012150149892783745,
199187
eta0=0.016444224834275295, l1_ratio=1.7462342366289323e-09,
200188
loss='epsilon_insensitive', max_iter=16, penalty='elasticnet',
201189
power_t=0.21521743568582094, random_state=1,
202190
tol=0.002431731981071206, warm_start=True)},
203-
27: { 'cost': 0.4622486119001967,
204-
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f1e4ed322e0>,
205-
'ensemble_weight': 0.14,
206-
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f1e52b41880>,
207-
'model_id': 27,
191+
39: { 'cost': 0.4748068089650166,
192+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fb34b258eb0>,
193+
'ensemble_weight': 0.18,
194+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fb34674f6a0>,
195+
'model_id': 39,
208196
'rank': 3,
209-
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f1e5443d3d0>,
210-
'sklearn_regressor': ARDRegression(alpha_1=2.7664515192592053e-05, alpha_2=9.504988116581138e-07,
211-
copy_X=False, lambda_1=6.50650698230178e-09,
212-
lambda_2=4.238533890074848e-07,
213-
threshold_lambda=78251.58542976103, tol=0.0007301343236220855)}}
197+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fb34674fa90>,
198+
'sklearn_regressor': ARDRegression(alpha_1=0.0005012365297609799, alpha_2=3.025360750168211e-08,
199+
copy_X=False, lambda_1=4.9749646614525684e-05,
200+
lambda_2=3.2368037115065363e-10,
201+
threshold_lambda=18669.665899307194, tol=0.0012624032013298571)}}
214202
215203
216204
@@ -244,8 +232,8 @@ predicting the data mean has an R2 score of 0.
244232

245233
.. code-block:: none
246234
247-
Train R2 score: 0.5944780427522034
248-
Test R2 score: 0.3959585042866587
235+
Train R2 score: 0.5855373845454157
236+
Test R2 score: 0.39879073225079487
249237
250238
251239
@@ -290,7 +278,7 @@ the true value).
290278

291279
.. rst-class:: sphx-glr-timing
292280

293-
**Total running time of the script:** ( 1 minutes 55.698 seconds)
281+
**Total running time of the script:** ( 1 minutes 55.959 seconds)
294282

295283

296284
.. _sphx_glr_download_examples_20_basic_example_regression.py:

0 commit comments

Comments
 (0)