You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: website/docs/Examples.md
+34-34Lines changed: 34 additions & 34 deletions
Original file line number
Diff line number
Diff line change
@@ -18,7 +18,7 @@ Links to notebook examples:
18
18
- Automated Task Solving by Group Chat (with 3 group member agents and 1 manager agent) - [View Notebook](/docs/notebooks/agentchat_groupchat)
19
19
- Automated Data Visualization by Group Chat (with 3 group member agents and 1 manager agent) - [View Notebook](/docs/notebooks/agentchat_groupchat_vis)
20
20
- Automated Complex Task Solving by Group Chat (with 6 group member agents and 1 manager agent) - [View Notebook](/docs/notebooks/agentchat_groupchat_research)
- Automated Task Solving with transition paths specified in a graph - [View Notebook](https://autogen-ai.github.io/autogen/docs/notebooks/agentchat_groupchat_finite_state_machine)
23
23
- Running a group chat as an inner-monolgue via the SocietyOfMindAgent - [View Notebook](/docs/notebooks/agentchat_society_of_mind)
24
24
- Running a group chat with custom speaker selection function - [View Notebook](/docs/notebooks/agentchat_groupchat_customized)
@@ -38,87 +38,87 @@ Links to notebook examples:
38
38
39
39
### Applications
40
40
41
-
- Automated Continual Learning from New Data - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_stream.ipynb)
-[AutoAnny](https://github.com/autogen-ai/autogen/tree/main/samples/apps/auto-anny) - A Discord bot built using AutoGen
44
44
45
45
### Tool Use
46
46
47
-
-**Web Search**: Solve Tasks Requiring Web Info - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_web_info.ipynb)
47
+
-**Web Search**: Solve Tasks Requiring Web Info - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_web_info.ipynb)
48
48
- Use Provided Tools as Functions - [View Notebook](/docs/notebooks/agentchat_function_call_currency_calculator)
49
49
- Use Tools via Sync and Async Function Calling - [View Notebook](/docs/notebooks/agentchat_function_call_async)
50
-
- Task Solving with Langchain Provided Tools as Functions - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_langchain.ipynb)
50
+
- Task Solving with Langchain Provided Tools as Functions - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_langchain.ipynb)
51
51
-**RAG**: Group Chat with Retrieval Augmented Generation (with 5 group member agents and 1 manager agent) - [View Notebook](/docs/notebooks/agentchat_groupchat_RAG)
52
-
- Function Inception: Enable AutoGen agents to update/remove functions during conversations. - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_inception_function.ipynb)
52
+
- Function Inception: Enable AutoGen agents to update/remove functions during conversations. - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_inception_function.ipynb)
53
53
- Agent Chat with Whisper - [View Notebook](/docs/notebooks/agentchat_video_transcript_translate_with_whisper)
54
-
- Constrained Responses via Guidance - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_guidance.ipynb)
55
-
- Browse the Web with Agents - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_surfer.ipynb)
56
-
-**SQL**: Natural Language Text to SQL Query using the [Spider](https://yale-lily.github.io/spider) Text-to-SQL Benchmark - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_sql_spider.ipynb)
54
+
- Constrained Responses via Guidance - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_guidance.ipynb)
55
+
- Browse the Web with Agents - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_surfer.ipynb)
56
+
-**SQL**: Natural Language Text to SQL Query using the [Spider](https://yale-lily.github.io/spider) Text-to-SQL Benchmark - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_sql_spider.ipynb)
57
57
-**Web Scraping**: Web Scraping with Apify - [View Notebook](/docs/notebooks/agentchat_webscraping_with_apify)
58
-
-**Write a software app, task by task, with specially designed functions.** - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_function_call_code_writing.ipynb).
58
+
-**Write a software app, task by task, with specially designed functions.** - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_function_call_code_writing.ipynb).
59
59
60
60
### Human Involvement
61
61
62
-
- Simple example in ChatGPT style [View example](https://github.com/microsoft/autogen/blob/main/samples/simple_chat.py)
63
-
- Auto Code Generation, Execution, Debugging and **Human Feedback** - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_human_feedback.ipynb)
64
-
- Automated Task Solving with GPT-4 + **Multiple Human Users** - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_two_users.ipynb)
65
-
- Agent Chat with **Async Human Inputs** - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/Async_human_input.ipynb)
62
+
- Simple example in ChatGPT style [View example](https://github.com/autogen-ai/autogen/blob/main/samples/simple_chat.py)
63
+
- Auto Code Generation, Execution, Debugging and **Human Feedback** - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_human_feedback.ipynb)
64
+
- Automated Task Solving with GPT-4 + **Multiple Human Users** - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_two_users.ipynb)
65
+
- Agent Chat with **Async Human Inputs** - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/Async_human_input.ipynb)
66
66
67
67
### Agent Teaching and Learning
68
68
69
69
- Teach Agents New Skills & Reuse via Automated Chat - [View Notebook](/docs/notebooks/agentchat_teaching)
70
70
- Teach Agents New Facts, User Preferences and Skills Beyond Coding - [View Notebook](/docs/notebooks/agentchat_teachability)
71
-
- Teach OpenAI Assistants Through GPTAssistantAgent - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_teachable_oai_assistants.ipynb)
72
-
- Agent Optimizer: Train Agents in an Agentic Way - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_agentoptimizer.ipynb)
71
+
- Teach OpenAI Assistants Through GPTAssistantAgent - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_teachable_oai_assistants.ipynb)
72
+
- Agent Optimizer: Train Agents in an Agentic Way - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_agentoptimizer.ipynb)
73
73
74
74
### Multi-Agent Chat with OpenAI Assistants in the loop
75
75
76
-
- Hello-World Chat with OpenAi Assistant in AutoGen - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_assistant_twoagents_basic.ipynb)
77
-
- Chat with OpenAI Assistant using Function Call - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_assistant_function_call.ipynb)
78
-
- Chat with OpenAI Assistant with Code Interpreter - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_code_interpreter.ipynb)
79
-
- Chat with OpenAI Assistant with Retrieval Augmentation - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_assistant_retrieval.ipynb)
80
-
- OpenAI Assistant in a Group Chat - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_assistant_groupchat.ipynb)
81
-
- GPTAssistantAgent based Multi-Agent Tool Use - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/gpt_assistant_agent_function_call.ipynb)
76
+
- Hello-World Chat with OpenAi Assistant in AutoGen - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_oai_assistant_twoagents_basic.ipynb)
77
+
- Chat with OpenAI Assistant using Function Call - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_oai_assistant_function_call.ipynb)
78
+
- Chat with OpenAI Assistant with Code Interpreter - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_oai_code_interpreter.ipynb)
79
+
- Chat with OpenAI Assistant with Retrieval Augmentation - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_oai_assistant_retrieval.ipynb)
80
+
- OpenAI Assistant in a Group Chat - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_oai_assistant_groupchat.ipynb)
81
+
- GPTAssistantAgent based Multi-Agent Tool Use - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/gpt_assistant_agent_function_call.ipynb)
82
82
83
83
### Non-OpenAI Models
84
84
- Conversational Chess using non-OpenAI Models - [View Notebook](/docs/notebooks/agentchat_nested_chats_chess_altmodels)
85
85
86
86
### Multimodal Agent
87
87
88
-
- Multimodal Agent Chat with DALLE and GPT-4V - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_dalle_and_gpt4v.ipynb)
89
-
- Multimodal Agent Chat with Llava - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_lmm_llava.ipynb)
90
-
- Multimodal Agent Chat with GPT-4V - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_lmm_gpt-4v.ipynb)
88
+
- Multimodal Agent Chat with DALLE and GPT-4V - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_dalle_and_gpt4v.ipynb)
89
+
- Multimodal Agent Chat with Llava - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_lmm_llava.ipynb)
90
+
- Multimodal Agent Chat with GPT-4V - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_lmm_gpt-4v.ipynb)
91
91
92
92
### Long Context Handling
93
93
94
-
<!-- - Conversations with Chat History Compression Enabled - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_compression.ipynb) -->
94
+
<!-- - Conversations with Chat History Compression Enabled - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_compression.ipynb) -->
95
95
- Long Context Handling as A Capability - [View Notebook](/docs/notebooks/agentchat_transform_messages)
96
96
97
97
### Evaluation and Assessment
98
98
99
-
- AgentEval: A Multi-Agent System for Assess Utility of LLM-powered Applications - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agenteval_cq_math.ipynb)
99
+
- AgentEval: A Multi-Agent System for Assess Utility of LLM-powered Applications - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agenteval_cq_math.ipynb)
100
100
101
101
### Automatic Agent Building
102
102
103
-
- Automatically Build Multi-agent System with AgentBuilder - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/autobuild_basic.ipynb)
104
-
- Automatically Build Multi-agent System from Agent Library - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/autobuild_agent_library.ipynb)
103
+
- Automatically Build Multi-agent System with AgentBuilder - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/autobuild_basic.ipynb)
104
+
- Automatically Build Multi-agent System from Agent Library - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/autobuild_agent_library.ipynb)
105
105
106
106
### Observability
107
-
- Track LLM calls, tool usage, actions and errors using AgentOps - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_agentops.ipynb)
107
+
- Track LLM calls, tool usage, actions and errors using AgentOps - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_agentops.ipynb)
108
108
109
109
## Enhanced Inferences
110
110
111
111
### Utilities
112
112
113
113
- API Unification - [View Documentation with Code Example](https://autogen-ai.github.io/autogen/docs/Use-Cases/enhanced_inference/#api-unification)
114
114
- Utility Functions to Help Managing API configurations effectively - [View Notebook](/docs/topics/llm_configuration)
AutoGen offers a cost-effective hyperparameter optimization technique [EcoOptiGen](https://arxiv.org/abs/2303.04673) for tuning Large Language Models. The research study finds that tuning hyperparameters can significantly improve the utility of them.
120
120
Please find documentation about this feature [here](/docs/Use-Cases/enhanced_inference).
121
121
122
122
Links to notebook examples:
123
-
*[Optimize for Code Generation](https://github.com/microsoft/autogen/blob/main/notebook/oai_completion.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/autogen/blob/main/notebook/oai_completion.ipynb)
124
-
*[Optimize for Math](https://github.com/microsoft/autogen/blob/main/notebook/oai_chatgpt_gpt4.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/autogen/blob/main/notebook/oai_chatgpt_gpt4.ipynb)
123
+
*[Optimize for Code Generation](https://github.com/autogen-ai/autogen/blob/main/notebook/oai_completion.ipynb) | [Open in colab](https://colab.research.google.com/github/autogen-ai/autogen/blob/main/notebook/oai_completion.ipynb)
124
+
*[Optimize for Math](https://github.com/autogen-ai/autogen/blob/main/notebook/oai_chatgpt_gpt4.ipynb) | [Open in colab](https://colab.research.google.com/github/autogen-ai/autogen/blob/main/notebook/oai_chatgpt_gpt4.ipynb)
Copy file name to clipboardExpand all lines: website/docs/Getting-Started.mdx
+3-3Lines changed: 3 additions & 3 deletions
Original file line number
Diff line number
Diff line change
@@ -118,7 +118,7 @@ Learn more about configuring LLMs for agents [here](/docs/topics/llm_configurati
118
118
#### Multi-Agent Conversation Framework
119
119
120
120
Autogen enables the next-gen LLM applications with a generic multi-agent conversation framework. It offers customizable and conversable agents which integrate LLMs, tools, and humans.
121
-
By automating chat among multiple capable agents, one can easily make them collectively perform tasks autonomously or with human feedback, including tasks that require using tools via code. For [example](https://github.com/microsoft/autogen/blob/main/test/twoagent.py),
121
+
By automating chat among multiple capable agents, one can easily make them collectively perform tasks autonomously or with human feedback, including tasks that require using tools via code. For [example](https://github.com/autogen-ai/autogen/blob/main/test/twoagent.py),
122
122
123
123
The figure below shows an example conversation flow with AutoGen.
124
124
@@ -135,10 +135,10 @@ The figure below shows an example conversation flow with AutoGen.
135
135
- Follow on [Twitter](https://twitter.com/pyautogen)
136
136
- See our [roadmaps](https://aka.ms/autogen-roadmap)
137
137
138
-
If you like our project, please give it a [star](https://github.com/microsoft/autogen/stargazers) on GitHub. If you are interested in contributing, please read [Contributor's Guide](/docs/contributor-guide/contributing).
138
+
If you like our project, please give it a [star](https://github.com/autogen-ai/autogen/stargazers) on GitHub. If you are interested in contributing, please read [Contributor's Guide](/docs/contributor-guide/contributing).
Copy file name to clipboardExpand all lines: website/docs/Migration-Guide.md
+1-1Lines changed: 1 addition & 1 deletion
Original file line number
Diff line number
Diff line change
@@ -26,7 +26,7 @@ autogen.runtime_logging.start()
26
26
# Stop logging
27
27
autogen.runtime_logging.stop()
28
28
```
29
-
Checkout [Logging documentation](https://autogen-ai.github.io/autogen/docs/Use-Cases/enhanced_inference#logging) and [Logging example notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_logging.ipynb) to learn more.
29
+
Checkout [Logging documentation](https://autogen-ai.github.io/autogen/docs/Use-Cases/enhanced_inference#logging) and [Logging example notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_logging.ipynb) to learn more.
30
30
31
31
Inference parameter tuning can be done via [`flaml.tune`](https://autogen-ai.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function).
32
32
-`seed` in autogen is renamed into `cache_seed` to accommodate the newly added `seed` param in openai chat completion api. `use_cache` is removed as a kwarg in `OpenAIWrapper.create()` for being automatically decided by `cache_seed`: int | None. The difference between autogen's `cache_seed` and openai's `seed` is that:
Copy file name to clipboardExpand all lines: website/docs/Use-Cases/agent_chat.md
+3-3Lines changed: 3 additions & 3 deletions
Original file line number
Diff line number
Diff line change
@@ -81,13 +81,13 @@ AutoGen, by integrating conversation-driven control utilizing both programming a
81
81
82
82
With the pluggable auto-reply function, one can choose to invoke conversations with other agents depending on the content of the current message and context. For example:
83
83
- Hierarchical chat like in [OptiGuide](https://github.com/microsoft/optiguide).
84
-
-[Dynamic Group Chat](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_groupchat.ipynb) which is a special form of hierarchical chat. In the system, we register a reply function in the group chat manager, which broadcasts messages and decides who the next speaker will be in a group chat setting.
84
+
-[Dynamic Group Chat](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_groupchat.ipynb) which is a special form of hierarchical chat. In the system, we register a reply function in the group chat manager, which broadcasts messages and decides who the next speaker will be in a group chat setting.
85
85
-[Finite State Machine graphs to set speaker transition constraints](https://autogen-ai.github.io/autogen/docs/notebooks/agentchat_groupchat_finite_state_machine) which is a special form of dynamic group chat. In this approach, a directed transition matrix is fed into group chat. Users can specify legal transitions or specify disallowed transitions.
86
-
- Nested chat like in [conversational chess](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_nested_chats_chess.ipynb).
86
+
- Nested chat like in [conversational chess](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_nested_chats_chess.ipynb).
87
87
88
88
2. LLM-Based Function Call
89
89
90
-
Another approach involves LLM-based function calls, where LLM decides if a specific function should be invoked based on the conversation's status during each inference. This approach enables dynamic multi-agent conversations, as seen in scenarios like [multi-user math problem solving scenario](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_two_users.ipynb), where a student assistant automatically seeks expertise via function calls.
90
+
Another approach involves LLM-based function calls, where LLM decides if a specific function should be invoked based on the conversation's status during each inference. This approach enables dynamic multi-agent conversations, as seen in scenarios like [multi-user math problem solving scenario](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_two_users.ipynb), where a student assistant automatically seeks expertise via function calls.
0 commit comments