Skip to content

Commit d79b43f

Browse files
committed
Updated repo links
1 parent 53300e2 commit d79b43f

File tree

7 files changed

+45
-45
lines changed

7 files changed

+45
-45
lines changed

website/docs/Examples.md

Lines changed: 34 additions & 34 deletions
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ Links to notebook examples:
1818
- Automated Task Solving by Group Chat (with 3 group member agents and 1 manager agent) - [View Notebook](/docs/notebooks/agentchat_groupchat)
1919
- Automated Data Visualization by Group Chat (with 3 group member agents and 1 manager agent) - [View Notebook](/docs/notebooks/agentchat_groupchat_vis)
2020
- Automated Complex Task Solving by Group Chat (with 6 group member agents and 1 manager agent) - [View Notebook](/docs/notebooks/agentchat_groupchat_research)
21-
- Automated Task Solving with Coding & Planning Agents - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_planning.ipynb)
21+
- Automated Task Solving with Coding & Planning Agents - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_planning.ipynb)
2222
- Automated Task Solving with transition paths specified in a graph - [View Notebook](https://autogen-ai.github.io/autogen/docs/notebooks/agentchat_groupchat_finite_state_machine)
2323
- Running a group chat as an inner-monolgue via the SocietyOfMindAgent - [View Notebook](/docs/notebooks/agentchat_society_of_mind)
2424
- Running a group chat with custom speaker selection function - [View Notebook](/docs/notebooks/agentchat_groupchat_customized)
@@ -38,87 +38,87 @@ Links to notebook examples:
3838

3939
### Applications
4040

41-
- Automated Continual Learning from New Data - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_stream.ipynb)
42-
- [OptiGuide](https://github.com/microsoft/optiguide) - Coding, Tool Using, Safeguarding & Question Answering for Supply Chain Optimization
43-
- [AutoAnny](https://github.com/microsoft/autogen/tree/main/samples/apps/auto-anny) - A Discord bot built using AutoGen
41+
- Automated Continual Learning from New Data - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_stream.ipynb)
42+
<!-- - [OptiGuide](https://github.com/microsoft/optiguide) - Coding, Tool Using, Safeguarding & Question Answering for Supply Chain Optimization -->
43+
- [AutoAnny](https://github.com/autogen-ai/autogen/tree/main/samples/apps/auto-anny) - A Discord bot built using AutoGen
4444

4545
### Tool Use
4646

47-
- **Web Search**: Solve Tasks Requiring Web Info - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_web_info.ipynb)
47+
- **Web Search**: Solve Tasks Requiring Web Info - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_web_info.ipynb)
4848
- Use Provided Tools as Functions - [View Notebook](/docs/notebooks/agentchat_function_call_currency_calculator)
4949
- Use Tools via Sync and Async Function Calling - [View Notebook](/docs/notebooks/agentchat_function_call_async)
50-
- Task Solving with Langchain Provided Tools as Functions - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_langchain.ipynb)
50+
- Task Solving with Langchain Provided Tools as Functions - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_langchain.ipynb)
5151
- **RAG**: Group Chat with Retrieval Augmented Generation (with 5 group member agents and 1 manager agent) - [View Notebook](/docs/notebooks/agentchat_groupchat_RAG)
52-
- Function Inception: Enable AutoGen agents to update/remove functions during conversations. - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_inception_function.ipynb)
52+
- Function Inception: Enable AutoGen agents to update/remove functions during conversations. - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_inception_function.ipynb)
5353
- Agent Chat with Whisper - [View Notebook](/docs/notebooks/agentchat_video_transcript_translate_with_whisper)
54-
- Constrained Responses via Guidance - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_guidance.ipynb)
55-
- Browse the Web with Agents - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_surfer.ipynb)
56-
- **SQL**: Natural Language Text to SQL Query using the [Spider](https://yale-lily.github.io/spider) Text-to-SQL Benchmark - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_sql_spider.ipynb)
54+
- Constrained Responses via Guidance - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_guidance.ipynb)
55+
- Browse the Web with Agents - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_surfer.ipynb)
56+
- **SQL**: Natural Language Text to SQL Query using the [Spider](https://yale-lily.github.io/spider) Text-to-SQL Benchmark - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_sql_spider.ipynb)
5757
- **Web Scraping**: Web Scraping with Apify - [View Notebook](/docs/notebooks/agentchat_webscraping_with_apify)
58-
- **Write a software app, task by task, with specially designed functions.** - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_function_call_code_writing.ipynb).
58+
- **Write a software app, task by task, with specially designed functions.** - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_function_call_code_writing.ipynb).
5959

6060
### Human Involvement
6161

62-
- Simple example in ChatGPT style [View example](https://github.com/microsoft/autogen/blob/main/samples/simple_chat.py)
63-
- Auto Code Generation, Execution, Debugging and **Human Feedback** - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_human_feedback.ipynb)
64-
- Automated Task Solving with GPT-4 + **Multiple Human Users** - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_two_users.ipynb)
65-
- Agent Chat with **Async Human Inputs** - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/Async_human_input.ipynb)
62+
- Simple example in ChatGPT style [View example](https://github.com/autogen-ai/autogen/blob/main/samples/simple_chat.py)
63+
- Auto Code Generation, Execution, Debugging and **Human Feedback** - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_human_feedback.ipynb)
64+
- Automated Task Solving with GPT-4 + **Multiple Human Users** - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_two_users.ipynb)
65+
- Agent Chat with **Async Human Inputs** - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/Async_human_input.ipynb)
6666

6767
### Agent Teaching and Learning
6868

6969
- Teach Agents New Skills & Reuse via Automated Chat - [View Notebook](/docs/notebooks/agentchat_teaching)
7070
- Teach Agents New Facts, User Preferences and Skills Beyond Coding - [View Notebook](/docs/notebooks/agentchat_teachability)
71-
- Teach OpenAI Assistants Through GPTAssistantAgent - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_teachable_oai_assistants.ipynb)
72-
- Agent Optimizer: Train Agents in an Agentic Way - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_agentoptimizer.ipynb)
71+
- Teach OpenAI Assistants Through GPTAssistantAgent - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_teachable_oai_assistants.ipynb)
72+
- Agent Optimizer: Train Agents in an Agentic Way - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_agentoptimizer.ipynb)
7373

7474
### Multi-Agent Chat with OpenAI Assistants in the loop
7575

76-
- Hello-World Chat with OpenAi Assistant in AutoGen - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_assistant_twoagents_basic.ipynb)
77-
- Chat with OpenAI Assistant using Function Call - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_assistant_function_call.ipynb)
78-
- Chat with OpenAI Assistant with Code Interpreter - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_code_interpreter.ipynb)
79-
- Chat with OpenAI Assistant with Retrieval Augmentation - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_assistant_retrieval.ipynb)
80-
- OpenAI Assistant in a Group Chat - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_oai_assistant_groupchat.ipynb)
81-
- GPTAssistantAgent based Multi-Agent Tool Use - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/gpt_assistant_agent_function_call.ipynb)
76+
- Hello-World Chat with OpenAi Assistant in AutoGen - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_oai_assistant_twoagents_basic.ipynb)
77+
- Chat with OpenAI Assistant using Function Call - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_oai_assistant_function_call.ipynb)
78+
- Chat with OpenAI Assistant with Code Interpreter - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_oai_code_interpreter.ipynb)
79+
- Chat with OpenAI Assistant with Retrieval Augmentation - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_oai_assistant_retrieval.ipynb)
80+
- OpenAI Assistant in a Group Chat - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_oai_assistant_groupchat.ipynb)
81+
- GPTAssistantAgent based Multi-Agent Tool Use - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/gpt_assistant_agent_function_call.ipynb)
8282

8383
### Non-OpenAI Models
8484
- Conversational Chess using non-OpenAI Models - [View Notebook](/docs/notebooks/agentchat_nested_chats_chess_altmodels)
8585

8686
### Multimodal Agent
8787

88-
- Multimodal Agent Chat with DALLE and GPT-4V - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_dalle_and_gpt4v.ipynb)
89-
- Multimodal Agent Chat with Llava - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_lmm_llava.ipynb)
90-
- Multimodal Agent Chat with GPT-4V - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_lmm_gpt-4v.ipynb)
88+
- Multimodal Agent Chat with DALLE and GPT-4V - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_dalle_and_gpt4v.ipynb)
89+
- Multimodal Agent Chat with Llava - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_lmm_llava.ipynb)
90+
- Multimodal Agent Chat with GPT-4V - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_lmm_gpt-4v.ipynb)
9191

9292
### Long Context Handling
9393

94-
<!-- - Conversations with Chat History Compression Enabled - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_compression.ipynb) -->
94+
<!-- - Conversations with Chat History Compression Enabled - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_compression.ipynb) -->
9595
- Long Context Handling as A Capability - [View Notebook](/docs/notebooks/agentchat_transform_messages)
9696

9797
### Evaluation and Assessment
9898

99-
- AgentEval: A Multi-Agent System for Assess Utility of LLM-powered Applications - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agenteval_cq_math.ipynb)
99+
- AgentEval: A Multi-Agent System for Assess Utility of LLM-powered Applications - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agenteval_cq_math.ipynb)
100100

101101
### Automatic Agent Building
102102

103-
- Automatically Build Multi-agent System with AgentBuilder - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/autobuild_basic.ipynb)
104-
- Automatically Build Multi-agent System from Agent Library - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/autobuild_agent_library.ipynb)
103+
- Automatically Build Multi-agent System with AgentBuilder - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/autobuild_basic.ipynb)
104+
- Automatically Build Multi-agent System from Agent Library - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/autobuild_agent_library.ipynb)
105105

106106
### Observability
107-
- Track LLM calls, tool usage, actions and errors using AgentOps - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_agentops.ipynb)
107+
- Track LLM calls, tool usage, actions and errors using AgentOps - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_agentops.ipynb)
108108

109109
## Enhanced Inferences
110110

111111
### Utilities
112112

113113
- API Unification - [View Documentation with Code Example](https://autogen-ai.github.io/autogen/docs/Use-Cases/enhanced_inference/#api-unification)
114114
- Utility Functions to Help Managing API configurations effectively - [View Notebook](/docs/topics/llm_configuration)
115-
- Cost Calculation - [View Notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_cost_token_tracking.ipynb)
115+
- Cost Calculation - [View Notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_cost_token_tracking.ipynb)
116116

117117
### Inference Hyperparameters Tuning
118118

119119
AutoGen offers a cost-effective hyperparameter optimization technique [EcoOptiGen](https://arxiv.org/abs/2303.04673) for tuning Large Language Models. The research study finds that tuning hyperparameters can significantly improve the utility of them.
120120
Please find documentation about this feature [here](/docs/Use-Cases/enhanced_inference).
121121

122122
Links to notebook examples:
123-
* [Optimize for Code Generation](https://github.com/microsoft/autogen/blob/main/notebook/oai_completion.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/autogen/blob/main/notebook/oai_completion.ipynb)
124-
* [Optimize for Math](https://github.com/microsoft/autogen/blob/main/notebook/oai_chatgpt_gpt4.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/autogen/blob/main/notebook/oai_chatgpt_gpt4.ipynb)
123+
* [Optimize for Code Generation](https://github.com/autogen-ai/autogen/blob/main/notebook/oai_completion.ipynb) | [Open in colab](https://colab.research.google.com/github/autogen-ai/autogen/blob/main/notebook/oai_completion.ipynb)
124+
* [Optimize for Math](https://github.com/autogen-ai/autogen/blob/main/notebook/oai_chatgpt_gpt4.ipynb) | [Open in colab](https://colab.research.google.com/github/autogen-ai/autogen/blob/main/notebook/oai_chatgpt_gpt4.ipynb)

website/docs/FAQ.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -106,7 +106,7 @@ for each code-execution agent, or set `AUTOGEN_USE_DOCKER` to `False` as an
106106
environment variable.
107107

108108
You can also develop your AutoGen application in a docker container.
109-
For example, when developing in [GitHub codespace](https://codespaces.new/microsoft/autogen?quickstart=1),
109+
For example, when developing in [GitHub codespace](https://codespaces.new/autogen-ai/autogen?quickstart=1),
110110
AutoGen runs in a docker container.
111111
If you are not developing in GitHub Codespaces,
112112
follow instructions [here](installation/Docker.md#option-1-install-and-run-autogen-in-docker)

website/docs/Getting-Started.mdx

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -118,7 +118,7 @@ Learn more about configuring LLMs for agents [here](/docs/topics/llm_configurati
118118
#### Multi-Agent Conversation Framework
119119

120120
Autogen enables the next-gen LLM applications with a generic multi-agent conversation framework. It offers customizable and conversable agents which integrate LLMs, tools, and humans.
121-
By automating chat among multiple capable agents, one can easily make them collectively perform tasks autonomously or with human feedback, including tasks that require using tools via code. For [example](https://github.com/microsoft/autogen/blob/main/test/twoagent.py),
121+
By automating chat among multiple capable agents, one can easily make them collectively perform tasks autonomously or with human feedback, including tasks that require using tools via code. For [example](https://github.com/autogen-ai/autogen/blob/main/test/twoagent.py),
122122

123123
The figure below shows an example conversation flow with AutoGen.
124124

@@ -135,10 +135,10 @@ The figure below shows an example conversation flow with AutoGen.
135135
- Follow on [Twitter](https://twitter.com/pyautogen)
136136
- See our [roadmaps](https://aka.ms/autogen-roadmap)
137137

138-
If you like our project, please give it a [star](https://github.com/microsoft/autogen/stargazers) on GitHub. If you are interested in contributing, please read [Contributor's Guide](/docs/contributor-guide/contributing).
138+
If you like our project, please give it a [star](https://github.com/autogen-ai/autogen/stargazers) on GitHub. If you are interested in contributing, please read [Contributor's Guide](/docs/contributor-guide/contributing).
139139

140140
<iframe
141-
src="https://ghbtns.com/github-btn.html?user=microsoft&amp;repo=autogen&amp;type=star&amp;count=true&amp;size=large"
141+
src="https://ghbtns.com/github-btn.html?user=autogen-ai&amp;repo=autogen&amp;type=star&amp;count=true&amp;size=large"
142142
frameborder="0"
143143
scrolling="0"
144144
width="170"

website/docs/Migration-Guide.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@ autogen.runtime_logging.start()
2626
# Stop logging
2727
autogen.runtime_logging.stop()
2828
```
29-
Checkout [Logging documentation](https://autogen-ai.github.io/autogen/docs/Use-Cases/enhanced_inference#logging) and [Logging example notebook](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_logging.ipynb) to learn more.
29+
Checkout [Logging documentation](https://autogen-ai.github.io/autogen/docs/Use-Cases/enhanced_inference#logging) and [Logging example notebook](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_logging.ipynb) to learn more.
3030

3131
Inference parameter tuning can be done via [`flaml.tune`](https://autogen-ai.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function).
3232
- `seed` in autogen is renamed into `cache_seed` to accommodate the newly added `seed` param in openai chat completion api. `use_cache` is removed as a kwarg in `OpenAIWrapper.create()` for being automatically decided by `cache_seed`: int | None. The difference between autogen's `cache_seed` and openai's `seed` is that:

website/docs/Use-Cases/agent_chat.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -81,13 +81,13 @@ AutoGen, by integrating conversation-driven control utilizing both programming a
8181

8282
With the pluggable auto-reply function, one can choose to invoke conversations with other agents depending on the content of the current message and context. For example:
8383
- Hierarchical chat like in [OptiGuide](https://github.com/microsoft/optiguide).
84-
- [Dynamic Group Chat](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_groupchat.ipynb) which is a special form of hierarchical chat. In the system, we register a reply function in the group chat manager, which broadcasts messages and decides who the next speaker will be in a group chat setting.
84+
- [Dynamic Group Chat](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_groupchat.ipynb) which is a special form of hierarchical chat. In the system, we register a reply function in the group chat manager, which broadcasts messages and decides who the next speaker will be in a group chat setting.
8585
- [Finite State Machine graphs to set speaker transition constraints](https://autogen-ai.github.io/autogen/docs/notebooks/agentchat_groupchat_finite_state_machine) which is a special form of dynamic group chat. In this approach, a directed transition matrix is fed into group chat. Users can specify legal transitions or specify disallowed transitions.
86-
- Nested chat like in [conversational chess](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_nested_chats_chess.ipynb).
86+
- Nested chat like in [conversational chess](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_nested_chats_chess.ipynb).
8787

8888
2. LLM-Based Function Call
8989

90-
Another approach involves LLM-based function calls, where LLM decides if a specific function should be invoked based on the conversation's status during each inference. This approach enables dynamic multi-agent conversations, as seen in scenarios like [multi-user math problem solving scenario](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_two_users.ipynb), where a student assistant automatically seeks expertise via function calls.
90+
Another approach involves LLM-based function calls, where LLM decides if a specific function should be invoked based on the conversation's status during each inference. This approach enables dynamic multi-agent conversations, as seen in scenarios like [multi-user math problem solving scenario](https://github.com/autogen-ai/autogen/blob/main/notebook/agentchat_two_users.ipynb), where a student assistant automatically seeks expertise via function calls.
9191

9292
### Diverse Applications Implemented with AutoGen
9393

0 commit comments

Comments
 (0)