Skip to content
This repository was archived by the owner on Nov 17, 2023. It is now read-only.

Commit e10e94e

Browse files
TEChopra1000aaronmarkham
authored andcommitted
second round of fixing broken links in multiple files (#16598)
1 parent dd4eaf5 commit e10e94e

File tree

26 files changed

+50
-50
lines changed

26 files changed

+50
-50
lines changed

docs/python_docs/python/tutorials/packages/gluon/image/mnist.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -113,7 +113,7 @@ to train the MLP network we defined above.
113113
For our training, we will make use of the stochastic gradient descent (SGD) optimizer. In particular, we'll be using mini-batch SGD. Standard SGD processes train data one example at a time. In practice, this is very slow and one can speed up the process by processing examples in small batches. In this case, our batch size will be 100, which is a reasonable choice. Another parameter we select here is the learning rate, which controls the step size the optimizer takes in search of a solution. We'll pick a learning rate of 0.02, again a reasonable choice. Settings such as batch size and learning rate are what are usually referred to as hyper-parameters. What values we give them can have a great impact on training performance.
114114

115115
We will use [Trainer](/api/python/docs/api/gluon/trainer.html) class to apply the
116-
[SGD optimizer](https://mxnet.io/api/python/docs/api/gluon-related/_autogen/mxnet.optimizer.SGD.html) on the
116+
[SGD optimizer](/api/python/docs/api/optimizer/index.html#mxnet.optimizer.SGD) on the
117117
initialized parameters.
118118

119119
```python

docs/python_docs/python/tutorials/packages/ndarray/sparse/csr.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -556,7 +556,7 @@ except mx.MXNetError as err:
556556

557557
## Next
558558

559-
[Train a Linear Regression Model with Sparse Symbols](http://mxnet.apache.org/tutorials/sparse/train.html)
559+
[Train a Linear Regression Model with Sparse Symbols](/api/python/docs/tutorials/packages/ndarray/sparse/train.html)
560560

561561

562562
<!-- INSERT SOURCE DOWNLOAD BUTTONS -->

docs/python_docs/python/tutorials/packages/ndarray/sparse/row_sparse.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -578,7 +578,7 @@ except mx.MXNetError as err:
578578

579579
## Next
580580

581-
[Train a Linear Regression Model with Sparse Symbols](http://mxnet.apache.org/tutorials/sparse/train.html)
581+
[Train a Linear Regression Model with Sparse Symbols](/api/python/docs/tutorials/packages/ndarray/sparse/train.html)
582582

583583

584584
<!-- INSERT SOURCE DOWNLOAD BUTTONS -->

docs/python_docs/python/tutorials/packages/ndarray/sparse/train.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -27,18 +27,18 @@ then train a linear regression model using sparse symbols with the Module API.
2727

2828
To complete this tutorial, we need:
2929

30-
- MXNet. See the instructions for your operating system in [Setup and Installation](https://mxnet.io/get_started).
30+
- MXNet. See the instructions for your operating system in [Setup and Installation](/get_started).
3131

32-
- [Jupyter Notebook](https://jupyter.org/index.html) and [Python Requests](http://docs.python-requests.org/en/master/) packages.
32+
- [Jupyter Notebook](https://jupyter.org/index.html) and [Python Requests](https://3.python-requests.org/) packages.
3333
```
3434
pip install jupyter requests
3535
```
3636

3737
- Basic knowledge of Symbol in MXNet. See the detailed tutorial for Symbol in [Symbol - Neural Network Graphs and Auto-differentiation](https://mxnet.apache.org/tutorials/basic/symbol.html).
3838

39-
- Basic knowledge of CSRNDArray in MXNet. See the detailed tutorial for CSRNDArray in [CSRNDArray - NDArray in Compressed Sparse Row Storage Format](https://mxnet.apache.org/versions/master/tutorials/sparse/csr.html).
39+
- Basic knowledge of CSRNDArray in MXNet. See the detailed tutorial for CSRNDArray in [CSRNDArray - NDArray in Compressed Sparse Row Storage Format](/api/python/docs/tutorials/packages/ndarray/sparse/csr.html).
4040

41-
- Basic knowledge of RowSparseNDArray in MXNet. See the detailed tutorial for RowSparseNDArray in [RowSparseNDArray - NDArray for Sparse Gradient Updates](https://mxnet.apache.org/versions/master/tutorials/sparse/row_sparse.html).
41+
- Basic knowledge of RowSparseNDArray in MXNet. See the detailed tutorial for RowSparseNDArray in [RowSparseNDArray - NDArray for Sparse Gradient Updates](/api/python/docs/tutorials/packages/ndarray/sparse/row_sparse.html).
4242

4343
## Variables
4444

@@ -155,7 +155,7 @@ f = mx.sym.sparse.elemwise_add(c, c)
155155
### Storage Type Inference
156156

157157
What will be the output storage types of sparse symbols? In MXNet, for any sparse symbol, the result storage types are inferred based on storage types of inputs.
158-
You can read the [Sparse Symbol API](https://mxnet.apache.org/versions/master/api/python/symbol/sparse.html) documentation to find what output storage types are. In the example below we will try out the storage types introduced in the Row Sparse and Compressed Sparse Row tutorials: `default` (dense), `csr`, and `row_sparse`.
158+
You can read the [Sparse Symbol API](/api/python/docs/api/symbol/sparse/index.html) documentation to find what output storage types are. In the example below we will try out the storage types introduced in the Row Sparse and Compressed Sparse Row tutorials: `default` (dense), `csr`, and `row_sparse`.
159159

160160

161161
```python
Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
11
# NVIDIA Jetson Devices
22

33
To install MXNet on a Jetson TX or Nano, please refer to the [Jetson installation
4-
guide](get_started/jetson_setup).
4+
guide](/get_started/jetson_setup).

docs/static_site/src/_includes/get_started/get_started.html

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -256,8 +256,8 @@ <h2>Installing MXNet</h2>
256256
</div> <!-- END - C++-->
257257

258258
<br>
259-
For more installation options, refer to the <a href="get_started/ubuntu_setup.html">Ubuntu installation guide</a> and
260-
<a href="get_started/centos_setup.html">CentOS installation guide</a>.
259+
For more installation options, refer to the <a href="/get_started/ubuntu_setup.html">Ubuntu installation guide</a> and
260+
<a href="/get_started/centos_setup.html">CentOS installation guide</a>.
261261
</div> <!-- END - Linux -->
262262

263263

@@ -354,7 +354,7 @@ <h2>Installing MXNet</h2>
354354
</div> <!-- End of cpu gpu -->
355355
</div>
356356
<br>
357-
For more installation options, refer to the <a href="get_started/osx_setup.html">MXNet macOS installation guide</a>.
357+
For more installation options, refer to the <a href="/get_started/osx_setup.html">MXNet macOS installation guide</a>.
358358
</div> <!-- END - Mac OS -->
359359

360360

@@ -440,7 +440,7 @@ <h2>Installing MXNet</h2>
440440
</div> <!-- End of cpu gpu -->
441441
</div> <!-- End of C++ -->
442442

443-
For more installation options, refer to the <a href="get_started/windows_setup.html">MXNet Windows installation guide</a>.
443+
For more installation options, refer to the <a href="/get_started/windows_setup.html">MXNet Windows installation guide</a>.
444444
</div> <!-- End of Windows -->
445445

446446

docs/static_site/src/_includes/get_started/linux/java/cpu.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
You can use the Maven packages defined in the following dependency to include MXNet in your Java
22
project. The Java API is provided as a subset of the Scala API and is intended for inference only.
3-
Please refer to the <a href="get_started/java_setup.html">MXNet-Java setup guide</a> for a detailed set of
3+
Please refer to the <a href="/get_started/java_setup.html">MXNet-Java setup guide</a> for a detailed set of
44
instructions to help you with the setup process.
55

66
<a href="https://repository.apache.org/#nexus-search;gav~org.apache.mxnet~~1.5.0~~">

docs/static_site/src/_includes/get_started/linux/java/gpu.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
You can use the Maven packages defined in the following dependency to include MXNet in your Java
22
project. The Java API is provided as a subset of the Scala API and is intended for inference only.
3-
Please refer to the <a href="get_started/java_setup.html">MXNet-Java setup guide</a> for a detailed set of
3+
Please refer to the <a href="/get_started/java_setup.html">MXNet-Java setup guide</a> for a detailed set of
44
instructions to help you with the setup process.
55

66
<a href="https://repository.apache.org/#nexus-search;gav~org.apache.mxnet~~1.5.0~~">
Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,2 +1,2 @@
1-
Refer to the [Julia section of the MXNet Ubuntu installation guide](get_started/ubuntu_setup#install-the-mxnet-package-for-julia).
1+
Refer to the [Julia section of the MXNet Ubuntu installation guide](/get_started/ubuntu_setup#install-the-mxnet-package-for-julia).
22

docs/static_site/src/_includes/get_started/linux/r/cpu.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
The default version of R that is installed with `apt-get` is insufficient. You will need
2-
to first [install R v3.4.4+ and build MXNet from source](get_started/ubuntu_setup.html#install-the-mxnet-package-for-r).
2+
to first [install R v3.4.4+ and build MXNet from source](/get_started/ubuntu_setup.html#install-the-mxnet-package-for-r).
33

44
After you have setup R v3.4.4+ and MXNet, you can build and install the MXNet R bindings with the following, assuming that `incubator-mxnet` is the source directory you used to build MXNet as follows:
55

docs/static_site/src/_includes/get_started/linux/r/gpu.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
The default version of R that is installed with `apt-get` is insufficient. You will need
22
to first
33
[install R v3.4.4+ and build MXNet from
4-
source](get_started/ubuntu_setup.html#install-the-mxnet-package-for-r).
4+
source](/get_started/ubuntu_setup.html#install-the-mxnet-package-for-r).
55

66
After you have setup R v3.4.4+ and MXNet, you can build and install the MXNet R bindings
77
with the

docs/static_site/src/_includes/get_started/macos/java/cpu.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
You can use the Maven packages defined in the following dependency to include MXNet in
22
your Java project. The Java API is provided as a subset of the Scala API and is intended for
33
inference only.
4-
Please refer to the [MXNet-Java setup guide](get_started/java_setup.html) for a detailed set of instructions to help you with the setup process.
4+
Please refer to the [MXNet-Java setup guide](/get_started/java_setup.html) for a detailed set of instructions to help you with the setup process.
55

66
<a href="https://repository.apache.org/#nexus-search;gav~org.apache.mxnet~~1.5.0~~"><img
77
src="https://img.shields.io/badge/org.apache.mxnet-mac cpu-green.svg"

docs/static_site/src/_includes/get_started/pip_snippet.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
MXNet offers MKL pip packages that will be much faster when running on Intel hardware.
22
Check the chart below for other options, refer to <a href="https://pypi.org/project/mxnet/">PyPI for
3-
other MXNet pip packages</a>, or <a href="get_started/validate_mxnet.html">validate your MXNet installation</a>.
3+
other MXNet pip packages</a>, or <a href="/get_started/validate_mxnet.html">validate your MXNet installation</a>.
44

55
<div style="text-align: center">
66
<img src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/install/pip-packages-1.5.1.png"
Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
Refer to the [Julia section of the MXNet Windows installation guide](get_started/windows_setup.html#install-the-mxnet-package-for-julia).
1+
Refer to the [Julia section of the MXNet Windows installation guide](/get_started/windows_setup.html#install-the-mxnet-package-for-julia).
Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
Refer to the [Perl section of the MXNet Windows installation guide](get_started/windows_setup.html#install-the-mxnet-package-for-perl).
1+
Refer to the [Perl section of the MXNet Windows installation guide](/get_started/windows_setup.html#install-the-mxnet-package-for-perl).
Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
Refer to the [MXNet Windows installation guide](get_started/windows_setup.html)
1+
Refer to the [MXNet Windows installation guide](/get_started/windows_setup.html)
Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
To build from source, refer to the [MXNet Windows installation guide](get_started/windows_setup.html).
1+
To build from source, refer to the [MXNet Windows installation guide](/get_started/windows_setup.html).

docs/static_site/src/_includes/get_started/windows/r/cpu.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
Note: packages for 3.6.x are not yet available.
22
Install 3.5.x of R from [CRAN](https://cran.r-project.org/bin/windows/base/old/).
33

4-
You can [build MXNet-R from source](get_started/windows_setup.html#install-mxnet-package-for-r), or
4+
You can [build MXNet-R from source](/get_started/windows_setup.html#install-mxnet-package-for-r), or
55
you can use a
66
pre-built binary:
77

docs/static_site/src/_includes/get_started/windows/r/gpu.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
You can [build MXNet-R from source](get_started/windows_setup.html#install-mxnet-package-for-r), or
1+
You can [build MXNet-R from source](/get_started/windows_setup.html#install-mxnet-package-for-r), or
22
you can use a
33
pre-built binary:
44

docs/static_site/src/pages/api/r/docs/tutorials/callback_function.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -272,7 +272,7 @@ Yes! You can stop the training early with `return(FALSE)`. See the following exa
272272
When the validation metric dips below the threshold we set, the training process stops.
273273

274274
## Next Steps
275-
* [Neural Networks with MXNet in Five Minutes](https://mxnet.io/tutorials/r/fiveMinutesNeuralNetwork.html)
276-
* [Classify Real-World Images with a Pretrained Model](https://mxnet.io/tutorials/r/classifyRealImageWithPretrainedModel.html)
277-
* [Handwritten Digits Classification Competition](https://mxnet.io/tutorials/r/mnistCompetition.html)
278-
* [Character Language Model Using RNN](https://mxnet.io/tutorials/r/charRnnModel.html)
275+
* [Neural Networks with MXNet in Five Minutes](/api/r/docs/tutorials/five_minutes_neural_network)
276+
* [Classify Real-World Images with a Pretrained Model](/api/r/docs/tutorials/classify_real_image_with_pretrained_model)
277+
* [Handwritten Digits Classification Competition](/api/r/docs/tutorials/mnist_competition)
278+
* [Character Language Model Using RNN](/api/r/docs/tutorials/char_rnn_model)

docs/static_site/src/pages/api/r/docs/tutorials/custom_loss_function.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -225,7 +225,7 @@ sum(abs(test.y - pred6[1,])) / length(test.y)
225225

226226

227227
## Next Steps
228-
* [Neural Networks with MXNet in Five Minutes](https://mxnet.io/tutorials/r/fiveMinutesNeuralNetwork.html)
229-
* [Classify Real-World Images with a PreTrained Model](https://mxnet.io/tutorials/r/classifyRealImageWithPretrainedModel.html)
230-
* [Handwritten Digits Classification Competition](https://mxnet.io/tutorials/r/mnistCompetition.html)
231-
* [Character Language Model Using RNN](https://mxnet.io/tutorials/r/charRnnModel.html)
228+
* [Neural Networks with MXNet in Five Minutes](/api/r/docs/tutorials/five_minutes_neural_network)
229+
* [Classify Real-World Images with a PreTrained Model](/api/r/docs/tutorials/classify_real_image_with_pretrained_model)
230+
* [Handwritten Digits Classification Competition](/api/r/docs/tutorials/mnist_competition)
231+
* [Character Language Model Using RNN](/api/r/docs/tutorials/char_rnn_model)

docs/static_site/src/pages/api/r/docs/tutorials/multi_dim_lstm.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -55,7 +55,7 @@ PM2.5 concentration levels.
5555

5656
Load and pre-process the data
5757
---------
58-
The first step is to load in the data and preprocess it. It is assumed that the data has been downloaded in a .csv file: data.csv from the [pollution dataset](https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data)
58+
The first step is to load in the data and preprocess it. It is assumed that the data has been downloaded in a .csv file: data.csv from the [pollution dataset](https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data).
5959

6060
```r
6161
## Loading required packages
@@ -324,4 +324,4 @@ We also repeated the above experiments to generate the next 100 samples to 301st
324324

325325
The above tutorial is just for demonstration purposes and has not been tuned extensively for accuracy.
326326

327-
For more tutorials on MXNet-R, head on to [MXNet-R tutorials](https://mxnet.apache.org/tutorials/r/index.html)
327+
For more tutorials on MXNet-R, head on to [MXNet-R tutorials](/api/r/docs/tutorials)

docs/static_site/src/pages/api/r/docs/tutorials/ndarray.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -223,9 +223,9 @@ The actual computations are finished, allowing us to copy the results someplace
223223
the results.
224224

225225
## Next Steps
226-
* [Symbol](https://mxnet.io/tutorials/r/symbol.html)
227-
* [Write and use callback functions](https://mxnet.io/tutorials/r/CallbackFunction.html)
228-
* [Neural Networks with MXNet in Five Minutes](https://mxnet.io/tutorials/r/fiveMinutesNeuralNetwork.html)
229-
* [Classify Real-World Images with Pre-trained Model](https://mxnet.io/tutorials/r/classifyRealImageWithPretrainedModel.html)
230-
* [Handwritten Digits Classification Competition](https://mxnet.io/tutorials/r/mnistCompetition.html)
231-
* [Character Language Model using RNN](https://mxnet.io/tutorials/r/charRnnModel.html)
226+
* [Symbol](/api/r/docs/tutorials/symbol)
227+
* [Write and use callback functions](/api/r/docs/tutorials/callback_function)
228+
* [Neural Networks with MXNet in Five Minutes](/api/r/docs/tutorials/five_minutes_neural_network)
229+
* [Classify Real-World Images with Pre-trained Model](/api/r/docs/tutorials/classify_real_image_with_pretrained_model)
230+
* [Handwritten Digits Classification Competition](/api/r/docs/tutorials/mnist_competition)
231+
* [Character Language Model using RNN](/api/r/docs/tutorials/char_rnn_model)

docs/static_site/src/pages/api/r/docs/tutorials/symbol.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -130,7 +130,7 @@ In the example, *net* is used as a function to apply to an existing symbol
130130

131131
The [model API](https://github.com/apache/incubator-mxnet/blob/master/R-package/R/model.R) is a thin wrapper around the symbolic executors to support neural net training.
132132

133-
We encourage you to read [Symbolic Configuration and Execution in Pictures for python package](../../api/python/symbol_in_pictures/symbol_in_pictures.md)for a detailed explanation of concepts in pictures.
133+
We encourage you to read [Symbolic Configuration and Execution in Pictures for python package](/api/python/symbol_in_pictures/symbol_in_pictures.md)for a detailed explanation of concepts in pictures.
134134

135135
## How Efficient Is the Symbolic API?
136136

@@ -147,8 +147,8 @@ be more memory efficient than CXXNet and gets to the same runtime with
147147
greater flexibility.
148148

149149
## Next Steps
150-
* [Write and use callback functions](https://mxnet.io/tutorials/r/CallbackFunction.html)
151-
* [Neural Networks with MXNet in Five Minutes](https://mxnet.io/tutorials/r/fiveMinutesNeuralNetwork.html)
152-
* [Classify Real-World Images with Pre-trained Model](https://mxnet.io/tutorials/r/classifyRealImageWithPretrainedModel.html)
153-
* [Handwritten Digits Classification Competition](https://mxnet.io/tutorials/r/mnistCompetition.html)
154-
* [Character Language Model using RNN](https://mxnet.io/tutorials/r/charRnnModel.html)
150+
* [Write and use callback functions](/api/r/docs/tutorials/callback_function)
151+
* [Neural Networks with MXNet in Five Minutes](/api/r/docs/tutorials/five_minutes_neural_network)
152+
* [Classify Real-World Images with Pre-trained Model](/api/r/docs/tutorials/classify_real_image_with_pretrained_model)
153+
* [Handwritten Digits Classification Competition](/api/r/docs/tutorials/mnist_competition)
154+
* [Character Language Model using RNN](/api/r/docs/tutorials/char_rnn_model)

docs/static_site/src/pages/get_started/index.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -28,6 +28,6 @@
2828
<div class="get-started-from-source">
2929
<div class="wrapper">
3030
<h2>Download from source</h2>
31-
<p>The signed source code for Apache MXNet (incubating) is available for download <a href="get_started/download">here</a></p>
31+
<p>The signed source code for Apache MXNet (incubating) is available for download <a href="/get_started/download">here</a></p>
3232
</div>
3333
</div>

julia/docs/src/tutorial/mnist.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@ multi-layer perceptron and then a convolutional neural network (the
2323
LeNet architecture) on the [MNIST handwritten digit
2424
dataset](http://yann.lecun.com/exdb/mnist/). The code for this tutorial
2525
could be found in
26-
[examples/mnist](https://github.com/apache/incubator-mxnet/blob/master/julia/docs/src/tutorial/mnist.md). There are also two Jupyter notebooks that expand a little more on the [MLP](https://github.com/ultradian/julia_notebooks/blob/master/mxnet/mnistMLP.ipynb) and the [LeNet](https://github.com/ultradian/julia_notebooks/blob/master/mxnet/mnistLenet.ipynb), using the more general `ArrayDataProvider`.
26+
[examples/mnist](/api/julia/docs/api/tutorial/mnist/). There are also two Jupyter notebooks that expand a little more on the [MLP](https://github.com/ultradian/julia_notebooks/blob/master/mxnet/mnistMLP.ipynb) and the [LeNet](https://github.com/ultradian/julia_notebooks/blob/master/mxnet/mnistLenet.ipynb), using the more general `ArrayDataProvider`.
2727

2828
Simple 3-layer MLP
2929
------------------

0 commit comments

Comments
 (0)