You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
{{ message }}
This repository was archived by the owner on Nov 17, 2023. It is now read-only.
Copy file name to clipboardExpand all lines: docs/tutorials/python/profiler.md
+75Lines changed: 75 additions & 0 deletions
Original file line number
Diff line number
Diff line change
@@ -206,6 +206,81 @@ Let's zoom in to check the time taken by operators
206
206
207
207
The above picture visualizes the sequence in which the operators were executed and the time taken by each operator.
208
208
209
+
### Profiling Custom Operators
210
+
Should the existing NDArray operators fail to meet all your model's needs, MXNet supports [Custom Operators](https://mxnet.incubator.apache.org/versions/master/tutorials/gluon/customop.html) that you can define in Python. In `forward()` and `backward()` of a custom operator, there are two kinds of code: "pure Python" code (NumPy operators included) and "sub-operators" (NDArray operators called within `forward()` and `backward()`). With that said, MXNet can profile the execution time of both kinds without additional setup. Specifically, the MXNet profiler will break a single custom operator call into a pure Python event and several sub-operator events if there are any. Furthermore, all of those events will have a prefix in their names, which is, conveniently, the name of the custom operator you called.
211
+
212
+
Let's try profiling custom operators with the following code example:
Here, we have created a custom operator called `MyAddOne`, and within its `forward()` function, we simply add one to the input. We can visualize the dump file in `chrome://tracing/`:
As shown by the screenshot, in the **Custom Operator** domain where all the custom operator-related events fall into, we can easily visualize the execution time of each segment of `MyAddOne`. We can tell that `MyAddOne::pure_python` is executed first. We also know that `CopyCPU2CPU` and `_plus_scalr` are two "sub-operators" of `MyAddOne` and the sequence in which they are executed.
263
+
264
+
Please note that: to be able to see the previously described information, you need to set `profile_imperative` to `True` even when you are using custom operators in [symbolic mode](https://mxnet.incubator.apache.org/versions/master/tutorials/basic/symbol.html) (refer to the code snippet below, which is the symbolic-mode equivelent of the code example above). The reason is that within custom operators, pure python code and sub-operators are still called imperatively.
MXNet's Profiler is the recommended starting point for profiling MXNet code, but NVIDIA also provides a couple of tools for low-level profiling of CUDA code: [NVProf](https://devblogs.nvidia.com/cuda-pro-tip-nvprof-your-handy-universal-gpu-profiler/), [Visual Profiler](https://developer.nvidia.com/nvidia-visual-profiler) and [Nsight Compute](https://developer.nvidia.com/nsight-compute). You can use these tools to profile all kinds of executables, so they can be used for profiling Python scripts running MXNet. And you can use these in conjunction with the MXNet Profiler to see high-level information from MXNet alongside the low-level CUDA kernel information.
0 commit comments