forked from deepmodeling/deepmd-kit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathse_r.py
321 lines (287 loc) · 10.2 KB
/
se_r.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# SPDX-License-Identifier: LGPL-3.0-or-later
import numpy as np
from deepmd.utils.path import (
DPPath,
)
try:
from deepmd._version import version as __version__
except ImportError:
__version__ = "unknown"
import copy
from typing import (
Any,
List,
Optional,
)
from deepmd.dpmodel import (
DEFAULT_PRECISION,
PRECISION_DICT,
NativeOP,
)
from deepmd.dpmodel.utils import (
EmbeddingNet,
EnvMat,
NetworkCollection,
PairExcludeMask,
)
from deepmd.env import (
GLOBAL_NP_FLOAT_PRECISION,
)
from .base_descriptor import (
BaseDescriptor,
)
@BaseDescriptor.register("se_e2_r")
@BaseDescriptor.register("se_r")
class DescrptSeR(NativeOP, BaseDescriptor):
r"""DeepPot-SE_R constructed from only the radial imformation of atomic configurations.
Parameters
----------
rcut
The cut-off radius :math:`r_c`
rcut_smth
From where the environment matrix should be smoothed :math:`r_s`
sel : list[str]
sel[i] specifies the maxmum number of type i atoms in the cut-off radius
neuron : list[int]
Number of neurons in each hidden layers of the embedding net :math:`\mathcal{N}`
resnet_dt
Time-step `dt` in the resnet construction:
y = x + dt * \phi (Wx + b)
trainable
If the weights of embedding net are trainable.
type_one_side
Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets
exclude_types : List[List[int]]
The excluded pairs of types which have no interaction with each other.
For example, `[[0, 1]]` means no interaction between type 0 and type 1.
set_davg_zero
Set the shift of embedding net input to zero.
activation_function
The activation function in the embedding net. Supported options are |ACTIVATION_FN|
precision
The precision of the embedding net parameters. Supported options are |PRECISION|
multi_task
If the model has multi fitting nets to train.
spin
The deepspin object.
Limitations
-----------
The currently implementation does not support the following features
1. type_one_side == False
2. exclude_types != []
3. spin is not None
References
----------
.. [1] Linfeng Zhang, Jiequn Han, Han Wang, Wissam A. Saidi, Roberto Car, and E. Weinan. 2018.
End-to-end symmetry preserving inter-atomic potential energy model for finite and extended
systems. In Proceedings of the 32nd International Conference on Neural Information Processing
Systems (NIPS'18). Curran Associates Inc., Red Hook, NY, USA, 4441-4451.
"""
def __init__(
self,
rcut: float,
rcut_smth: float,
sel: List[str],
neuron: List[int] = [24, 48, 96],
resnet_dt: bool = False,
trainable: bool = True,
type_one_side: bool = True,
exclude_types: List[List[int]] = [],
set_davg_zero: bool = False,
activation_function: str = "tanh",
precision: str = DEFAULT_PRECISION,
spin: Optional[Any] = None,
# consistent with argcheck, not used though
seed: Optional[int] = None,
) -> None:
## seed, uniform_seed, multi_task, not included.
if not type_one_side:
raise NotImplementedError("type_one_side == False not implemented")
if spin is not None:
raise NotImplementedError("spin is not implemented")
self.rcut = rcut
self.rcut_smth = rcut_smth
self.sel = sel
self.ntypes = len(self.sel)
self.neuron = neuron
self.resnet_dt = resnet_dt
self.trainable = trainable
self.type_one_side = type_one_side
self.exclude_types = exclude_types
self.set_davg_zero = set_davg_zero
self.activation_function = activation_function
self.precision = precision
self.spin = spin
self.emask = PairExcludeMask(self.ntypes, self.exclude_types)
in_dim = 1 # not considiering type embedding
self.embeddings = NetworkCollection(
ntypes=self.ntypes,
ndim=(1 if self.type_one_side else 2),
network_type="embedding_network",
)
if not self.type_one_side:
raise NotImplementedError("type_one_side == False not implemented")
for ii in range(self.ntypes):
self.embeddings[(ii,)] = EmbeddingNet(
in_dim,
self.neuron,
self.activation_function,
self.resnet_dt,
self.precision,
)
self.env_mat = EnvMat(self.rcut, self.rcut_smth)
self.nnei = np.sum(self.sel)
self.davg = np.zeros(
[self.ntypes, self.nnei, 1], dtype=PRECISION_DICT[self.precision]
)
self.dstd = np.ones(
[self.ntypes, self.nnei, 1], dtype=PRECISION_DICT[self.precision]
)
self.orig_sel = self.sel
def __setitem__(self, key, value):
if key in ("avg", "data_avg", "davg"):
self.davg = value
elif key in ("std", "data_std", "dstd"):
self.dstd = value
else:
raise KeyError(key)
def __getitem__(self, key):
if key in ("avg", "data_avg", "davg"):
return self.davg
elif key in ("std", "data_std", "dstd"):
return self.dstd
else:
raise KeyError(key)
@property
def dim_out(self):
"""Returns the output dimension of this descriptor."""
return self.get_dim_out()
def get_dim_out(self):
"""Returns the output dimension of this descriptor."""
return self.neuron[-1]
def get_dim_emb(self):
"""Returns the embedding (g2) dimension of this descriptor."""
raise NotImplementedError
def get_rcut(self):
"""Returns cutoff radius."""
return self.rcut
def get_sel(self):
"""Returns cutoff radius."""
return self.sel
def mixed_types(self):
"""Returns if the descriptor requires a neighbor list that distinguish different
atomic types or not.
"""
return False
def get_ntypes(self) -> int:
"""Returns the number of element types."""
return self.ntypes
def compute_input_stats(self, merged: List[dict], path: Optional[DPPath] = None):
"""Update mean and stddev for descriptor elements."""
raise NotImplementedError
def cal_g(
self,
ss,
ll,
):
nf, nloc, nnei = ss.shape[0:3]
ss = ss.reshape(nf, nloc, nnei, 1)
# nf x nloc x nnei x ng
gg = self.embeddings[(ll,)].call(ss)
return gg
def call(
self,
coord_ext,
atype_ext,
nlist,
mapping: Optional[np.ndarray] = None,
):
"""Compute the descriptor.
Parameters
----------
coord_ext
The extended coordinates of atoms. shape: nf x (nallx3)
atype_ext
The extended aotm types. shape: nf x nall
nlist
The neighbor list. shape: nf x nloc x nnei
mapping
The index mapping from extended to lcoal region. not used by this descriptor.
Returns
-------
descriptor
The descriptor. shape: nf x nloc x (ng x axis_neuron)
gr
The rotationally equivariant and permutationally invariant single particle
representation. shape: nf x nloc x ng x 3
g2
The rotationally invariant pair-partical representation.
this descriptor returns None
h2
The rotationally equivariant pair-partical representation.
this descriptor returns None
sw
The smooth switch function.
"""
del mapping
# nf x nloc x nnei x 1
rr, ww = self.env_mat.call(
coord_ext, atype_ext, nlist, self.davg, self.dstd, True
)
nf, nloc, nnei, _ = rr.shape
sec = np.append([0], np.cumsum(self.sel))
ng = self.neuron[-1]
xyz_scatter = np.zeros([nf, nloc, ng], dtype=PRECISION_DICT[self.precision])
exclude_mask = self.emask.build_type_exclude_mask(nlist, atype_ext)
for tt in range(self.ntypes):
mm = exclude_mask[:, :, sec[tt] : sec[tt + 1]]
tr = rr[:, :, sec[tt] : sec[tt + 1], :]
tr = tr * mm[:, :, :, None]
gg = self.cal_g(tr, tt)
gg = np.mean(gg, axis=2)
# nf x nloc x ng x 1
xyz_scatter += gg
res_rescale = 1.0 / 10.0
res = xyz_scatter * res_rescale
res = res.reshape(nf, nloc, -1).astype(GLOBAL_NP_FLOAT_PRECISION)
return res, None, None, None, ww
def serialize(self) -> dict:
"""Serialize the descriptor to dict."""
return {
"@class": "Descriptor",
"type": "se_r",
"rcut": self.rcut,
"rcut_smth": self.rcut_smth,
"sel": self.sel,
"neuron": self.neuron,
"resnet_dt": self.resnet_dt,
"trainable": self.trainable,
"type_one_side": self.type_one_side,
"exclude_types": self.exclude_types,
"set_davg_zero": self.set_davg_zero,
"activation_function": self.activation_function,
# make deterministic
"precision": np.dtype(PRECISION_DICT[self.precision]).name,
"spin": self.spin,
"env_mat": self.env_mat.serialize(),
"embeddings": self.embeddings.serialize(),
"@variables": {
"davg": self.davg,
"dstd": self.dstd,
},
}
@classmethod
def deserialize(cls, data: dict) -> "DescrptSeR":
"""Deserialize from dict."""
data = copy.deepcopy(data)
data.pop("@class", None)
data.pop("type", None)
variables = data.pop("@variables")
embeddings = data.pop("embeddings")
env_mat = data.pop("env_mat")
obj = cls(**data)
obj["davg"] = variables["davg"]
obj["dstd"] = variables["dstd"]
obj.embeddings = NetworkCollection.deserialize(embeddings)
obj.env_mat = EnvMat.deserialize(env_mat)
return obj