forked from llvm/llvm-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathXtensaISelLowering.cpp
1340 lines (1131 loc) · 47.9 KB
/
XtensaISelLowering.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===- XtensaISelLowering.cpp - Xtensa DAG Lowering Implementation --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that Xtensa uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "XtensaISelLowering.h"
#include "XtensaConstantPoolValue.h"
#include "XtensaInstrInfo.h"
#include "XtensaMachineFunctionInfo.h"
#include "XtensaSubtarget.h"
#include "XtensaTargetMachine.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <deque>
using namespace llvm;
#define DEBUG_TYPE "xtensa-lower"
// Return true if we must use long (in fact, indirect) function call.
// It's simplified version, production implimentation must
// resolve a functions in ROM (usually glibc functions)
static bool isLongCall(const char *str) {
// Currently always use long calls
return true;
}
XtensaTargetLowering::XtensaTargetLowering(const TargetMachine &TM,
const XtensaSubtarget &STI)
: TargetLowering(TM), Subtarget(STI) {
MVT PtrVT = MVT::i32;
// Set up the register classes.
addRegisterClass(MVT::i32, &Xtensa::ARRegClass);
// Set up special registers.
setStackPointerRegisterToSaveRestore(Xtensa::SP);
setSchedulingPreference(Sched::RegPressure);
setMinFunctionAlignment(Align(4));
setOperationAction(ISD::Constant, MVT::i32, Custom);
setOperationAction(ISD::Constant, MVT::i64, Expand);
setBooleanContents(ZeroOrOneBooleanContent);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
setOperationAction(ISD::BITCAST, MVT::i32, Expand);
setOperationAction(ISD::BITCAST, MVT::f32, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Expand);
// No sign extend instructions for i1 and sign extend load i8
for (MVT VT : MVT::integer_valuetypes()) {
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
}
setOperationAction(ISD::ConstantPool, PtrVT, Custom);
setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
setOperationAction(ISD::BlockAddress, PtrVT, Custom);
setOperationAction(ISD::JumpTable, PtrVT, Custom);
// Expand jump table branches as address arithmetic followed by an
// indirect jump.
setOperationAction(ISD::BR_JT, MVT::Other, Custom);
setOperationAction(ISD::BR_CC, MVT::i32, Legal);
setOperationAction(ISD::BR_CC, MVT::i64, Expand);
setOperationAction(ISD::BR_CC, MVT::f32, Expand);
setOperationAction(ISD::SELECT, MVT::i32, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
setOperationAction(ISD::SETCC, MVT::i32, Expand);
setCondCodeAction(ISD::SETGT, MVT::i32, Expand);
setCondCodeAction(ISD::SETLE, MVT::i32, Expand);
setCondCodeAction(ISD::SETUGT, MVT::i32, Expand);
setCondCodeAction(ISD::SETULE, MVT::i32, Expand);
setOperationAction(ISD::MUL, MVT::i32, Expand);
setOperationAction(ISD::MULHU, MVT::i32, Expand);
setOperationAction(ISD::MULHS, MVT::i32, Expand);
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
setOperationAction(ISD::SDIV, MVT::i32, Expand);
setOperationAction(ISD::UDIV, MVT::i32, Expand);
setOperationAction(ISD::SREM, MVT::i32, Expand);
setOperationAction(ISD::UREM, MVT::i32, Expand);
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
setOperationAction(ISD::ROTL, MVT::i32, Expand);
setOperationAction(ISD::ROTR, MVT::i32, Expand);
setOperationAction(ISD::CTPOP, MVT::i32, Custom);
setOperationAction(ISD::CTTZ, MVT::i32, Expand);
setOperationAction(ISD::CTLZ, MVT::i32, Expand);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
// Implement custom stack allocations
setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
// Implement custom stack save and restore
setOperationAction(ISD::STACKSAVE, MVT::Other, Custom);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
// VASTART, VAARG and VACOPY need to deal with the Xtensa-specific varargs
// structure, but VAEND is a no-op.
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::VAARG, MVT::Other, Custom);
setOperationAction(ISD::VACOPY, MVT::Other, Custom);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
// Compute derived properties from the register classes
computeRegisterProperties(STI.getRegisterInfo());
}
bool XtensaTargetLowering::isOffsetFoldingLegal(
const GlobalAddressSDNode *GA) const {
// The Xtensa target isn't yet aware of offsets.
return false;
}
//===----------------------------------------------------------------------===//
// Inline asm support
//===----------------------------------------------------------------------===//
TargetLowering::ConstraintType
XtensaTargetLowering::getConstraintType(StringRef Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'r':
return C_RegisterClass;
default:
break;
}
}
return TargetLowering::getConstraintType(Constraint);
}
TargetLowering::ConstraintWeight
XtensaTargetLowering::getSingleConstraintMatchWeight(
AsmOperandInfo &Info, const char *Constraint) const {
ConstraintWeight Weight = CW_Invalid;
Value *CallOperandVal = Info.CallOperandVal;
// If we don't have a value, we can't do a match,
// but allow it at the lowest weight.
if (!CallOperandVal)
return CW_Default;
Type *Ty = CallOperandVal->getType();
// Look at the constraint type.
switch (*Constraint) {
default:
Weight = TargetLowering::getSingleConstraintMatchWeight(Info, Constraint);
break;
case 'r':
if (Ty->isIntegerTy())
Weight = CW_Register;
break;
}
return Weight;
}
std::pair<unsigned, const TargetRegisterClass *>
XtensaTargetLowering::getRegForInlineAsmConstraint(
const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
if (Constraint.size() == 1) {
// GCC Constraint Letters
switch (Constraint[0]) {
default:
break;
case 'r': // General-purpose register
return std::make_pair(0U, &Xtensa::ARRegClass);
}
}
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}
void XtensaTargetLowering::LowerAsmOperandForConstraint(
SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops,
SelectionDAG &DAG) const {
SDLoc DL(Op);
// Only support length 1 constraints for now.
if (Constraint.size() > 1)
return;
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
//===----------------------------------------------------------------------===//
// Calling conventions
//===----------------------------------------------------------------------===//
#include "XtensaGenCallingConv.inc"
static const MCPhysReg IntRegs[] = {Xtensa::A2, Xtensa::A3, Xtensa::A4,
Xtensa::A5, Xtensa::A6, Xtensa::A7};
static bool CC_Xtensa_Custom(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
if (ArgFlags.isByVal()) {
Align ByValAlign = ArgFlags.getNonZeroByValAlign();
unsigned ByValSize = ArgFlags.getByValSize();
if (ByValSize < 4) {
ByValSize = 4;
}
if (ByValAlign < Align(4)) {
ByValAlign = Align(4);
}
unsigned Offset = State.AllocateStack(ByValSize, ByValAlign);
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
// Mark all unused registers as allocated to avoid misuse
// of such registers.
while (State.AllocateReg(IntRegs))
;
return false;
}
// Promote i8 and i16
if (LocVT == MVT::i8 || LocVT == MVT::i16) {
LocVT = MVT::i32;
if (ArgFlags.isSExt())
LocInfo = CCValAssign::SExt;
else if (ArgFlags.isZExt())
LocInfo = CCValAssign::ZExt;
else
LocInfo = CCValAssign::AExt;
}
unsigned Register;
Align OrigAlign = ArgFlags.getNonZeroOrigAlign();
bool needs64BitAlign = (ValVT == MVT::i32 && OrigAlign == Align(8));
bool needs128BitAlign = (ValVT == MVT::i32 && OrigAlign == Align(16));
if (ValVT == MVT::i32) {
Register = State.AllocateReg(IntRegs);
// If this is the first part of an i64 arg,
// the allocated register must be either A2, A4 or A6.
if (needs64BitAlign && (Register == Xtensa::A3 || Register == Xtensa::A5 ||
Register == Xtensa::A7))
Register = State.AllocateReg(IntRegs);
// arguments with 16byte alignment must be passed in the first register or
// passed via stack
if (needs128BitAlign && (Register != Xtensa::A2))
while ((Register = State.AllocateReg(IntRegs)))
;
LocVT = MVT::i32;
} else if (ValVT == MVT::f64) {
// Allocate int register and shadow next int register.
Register = State.AllocateReg(IntRegs);
if (Register == Xtensa::A3 || Register == Xtensa::A5 ||
Register == Xtensa::A7)
Register = State.AllocateReg(IntRegs);
State.AllocateReg(IntRegs);
LocVT = MVT::i32;
} else {
report_fatal_error("Cannot handle this ValVT.");
}
if (!Register) {
unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), OrigAlign);
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
} else {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Register, LocVT, LocInfo));
}
return false;
}
CCAssignFn *XtensaTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
bool IsVarArg) const {
return CC_Xtensa_Custom;
}
SDValue XtensaTargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
XtensaMachineFunctionInfo *XtensaFI = MF.getInfo<XtensaMachineFunctionInfo>();
// Used with vargs to acumulate store chains.
std::vector<SDValue> OutChains;
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, IsVarArg));
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
// Arguments stored on registers
if (VA.isRegLoc()) {
EVT RegVT = VA.getLocVT();
if (RegVT != MVT::i32)
report_fatal_error("RegVT not supported by FormalArguments Lowering");
// Transform the arguments stored on
// physical registers into virtual ones
Register Reg = MF.addLiveIn(VA.getLocReg(), &Xtensa::ARRegClass);
SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
// If this is an 8 or 16-bit value, it has been passed promoted
// to 32 bits. Insert an assert[sz]ext to capture this, then
// truncate to the right size.
if (VA.getLocInfo() != CCValAssign::Full) {
unsigned Opcode = 0;
if (VA.getLocInfo() == CCValAssign::SExt)
Opcode = ISD::AssertSext;
else if (VA.getLocInfo() == CCValAssign::ZExt)
Opcode = ISD::AssertZext;
if (Opcode)
ArgValue = DAG.getNode(Opcode, DL, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
ArgValue = DAG.getNode((VA.getValVT() == MVT::f32) ? ISD::BITCAST
: ISD::TRUNCATE,
DL, VA.getValVT(), ArgValue);
}
InVals.push_back(ArgValue);
} else {
assert(VA.isMemLoc());
EVT ValVT = VA.getValVT();
// The stack pointer offset is relative to the caller stack frame.
int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
true);
if (Ins[VA.getValNo()].Flags.isByVal()) {
// Assume that in this case load operation is created
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
InVals.push_back(FIN);
} else {
// Create load nodes to retrieve arguments from the stack
SDValue FIN =
DAG.getFrameIndex(FI, getFrameIndexTy(DAG.getDataLayout()));
InVals.push_back(DAG.getLoad(
ValVT, DL, Chain, FIN,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
}
}
}
if (IsVarArg) {
unsigned Idx = CCInfo.getFirstUnallocated(IntRegs);
unsigned ArgRegsNum = std::size(IntRegs);
const TargetRegisterClass *RC = &Xtensa::ARRegClass;
MachineFrameInfo &MFI = MF.getFrameInfo();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
unsigned RegSize = 4;
MVT RegTy = MVT::i32;
MVT FITy = getFrameIndexTy(DAG.getDataLayout());
XtensaFI->setVarArgsFirstGPR(Idx + 2); // 2 - number of a2 register
XtensaFI->setVarArgsOnStackFrameIndex(
MFI.CreateFixedObject(4, CCInfo.getStackSize(), true));
// Offset of the first variable argument from stack pointer, and size of
// the vararg save area. For now, the varargs save area is either zero or
// large enough to hold a0-a7.
int VaArgOffset, VarArgsSaveSize;
// If all registers are allocated, then all varargs must be passed on the
// stack and we don't need to save any argregs.
if (ArgRegsNum == Idx) {
VaArgOffset = CCInfo.getStackSize();
VarArgsSaveSize = 0;
} else {
VarArgsSaveSize = RegSize * (ArgRegsNum - Idx);
VaArgOffset = -VarArgsSaveSize;
// Record the frame index of the first variable argument
// which is a value necessary to VASTART.
int FI = MFI.CreateFixedObject(RegSize, VaArgOffset, true);
XtensaFI->setVarArgsInRegsFrameIndex(FI);
// Copy the integer registers that may have been used for passing varargs
// to the vararg save area.
for (unsigned I = Idx; I < ArgRegsNum; ++I, VaArgOffset += RegSize) {
const Register Reg = RegInfo.createVirtualRegister(RC);
RegInfo.addLiveIn(IntRegs[I], Reg);
SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
FI = MFI.CreateFixedObject(RegSize, VaArgOffset, true);
SDValue PtrOff = DAG.getFrameIndex(FI, FITy);
SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
MachinePointerInfo::getFixedStack(MF, FI));
OutChains.push_back(Store);
}
}
}
// All stores are grouped in one node to allow the matching between
// the size of Ins and InVals. This only happens when on varg functions
if (!OutChains.empty()) {
OutChains.push_back(Chain);
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
}
return Chain;
}
SDValue
XtensaTargetLowering::LowerCall(CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &DL = CLI.DL;
SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &IsTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool IsVarArg = CLI.IsVarArg;
MachineFunction &MF = DAG.getMachineFunction();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
// TODO: Support tail call optimization.
IsTailCall = false;
// Analyze the operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
CCAssignFn *CC = CCAssignFnForCall(CallConv, IsVarArg);
CCInfo.AnalyzeCallOperands(Outs, CC);
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getStackSize();
Align StackAlignment = TFL->getStackAlign();
unsigned NextStackOffset = alignTo(NumBytes, StackAlignment);
Chain = DAG.getCALLSEQ_START(Chain, NextStackOffset, 0, DL);
// Copy argument values to their designated locations.
std::deque<std::pair<unsigned, SDValue>> RegsToPass;
SmallVector<SDValue, 8> MemOpChains;
SDValue StackPtr;
for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
CCValAssign &VA = ArgLocs[I];
SDValue ArgValue = OutVals[I];
ISD::ArgFlagsTy Flags = Outs[I].Flags;
if (VA.isRegLoc())
// Queue up the argument copies and emit them at the end.
RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
else if (Flags.isByVal()) {
assert(VA.isMemLoc());
assert(Flags.getByValSize() &&
"ByVal args of size 0 should have been ignored by front-end.");
assert(!IsTailCall &&
"Do not tail-call optimize if there is a byval argument.");
if (!StackPtr.getNode())
StackPtr = DAG.getCopyFromReg(Chain, DL, Xtensa::SP, PtrVT);
unsigned Offset = VA.getLocMemOffset();
SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
DAG.getIntPtrConstant(Offset, DL));
SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), DL, MVT::i32);
SDValue Memcpy = DAG.getMemcpy(
Chain, DL, Address, ArgValue, SizeNode, Flags.getNonZeroByValAlign(),
/*isVolatile=*/false, /*AlwaysInline=*/false,
/*CI=*/nullptr, std::nullopt, MachinePointerInfo(),
MachinePointerInfo());
MemOpChains.push_back(Memcpy);
} else {
assert(VA.isMemLoc() && "Argument not register or memory");
// Work out the address of the stack slot. Unpromoted ints and
// floats are passed as right-justified 8-byte values.
if (!StackPtr.getNode())
StackPtr = DAG.getCopyFromReg(Chain, DL, Xtensa::SP, PtrVT);
unsigned Offset = VA.getLocMemOffset();
SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
DAG.getIntPtrConstant(Offset, DL));
// Emit the store.
MemOpChains.push_back(
DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
}
}
// Join the stores, which are independent of one another.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
// Build a sequence of copy-to-reg nodes, chained and glued together.
SDValue Glue;
for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
unsigned Reg = RegsToPass[I].first;
Chain = DAG.getCopyToReg(Chain, DL, Reg, RegsToPass[I].second, Glue);
Glue = Chain.getValue(1);
}
std::string name;
unsigned char TF = 0;
// Accept direct calls by converting symbolic call addresses to the
// associated Target* opcodes.
if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
name = E->getSymbol();
TF = E->getTargetFlags();
if (isPositionIndependent()) {
report_fatal_error("PIC relocations is not supported");
} else
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, TF);
} else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
const GlobalValue *GV = G->getGlobal();
name = GV->getName().str();
}
if ((!name.empty()) && isLongCall(name.c_str())) {
// Create a constant pool entry for the callee address
XtensaCP::XtensaCPModifier Modifier = XtensaCP::no_modifier;
XtensaConstantPoolValue *CPV = XtensaConstantPoolSymbol::Create(
*DAG.getContext(), name.c_str(), 0 /* XtensaCLabelIndex */, false,
Modifier);
// Get the address of the callee into a register
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4), 0, TF);
SDValue CPWrap = getAddrPCRel(CPAddr, DAG);
Callee = CPWrap;
}
// The first call operand is the chain and the second is the target address.
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add a register mask operand representing the call-preserved registers.
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
// Add argument registers to the end of the list so that they are
// known live into the call.
for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
unsigned Reg = RegsToPass[I].first;
Ops.push_back(DAG.getRegister(Reg, RegsToPass[I].second.getValueType()));
}
// Glue the call to the argument copies, if any.
if (Glue.getNode())
Ops.push_back(Glue);
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Chain = DAG.getNode(XtensaISD::CALL, DL, NodeTys, Ops);
Glue = Chain.getValue(1);
// Mark the end of the call, which is glued to the call itself.
Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, DL, PtrVT, true),
DAG.getConstant(0, DL, PtrVT, true), Glue, DL);
Glue = Chain.getValue(1);
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RetLocs;
CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
RetCCInfo.AnalyzeCallResult(Ins, RetCC_Xtensa);
// Copy all of the result registers out of their specified physreg.
for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
CCValAssign &VA = RetLocs[I];
// Copy the value out, gluing the copy to the end of the call sequence.
unsigned Reg = VA.getLocReg();
SDValue RetValue = DAG.getCopyFromReg(Chain, DL, Reg, VA.getLocVT(), Glue);
Chain = RetValue.getValue(1);
Glue = RetValue.getValue(2);
InVals.push_back(RetValue);
}
return Chain;
}
bool XtensaTargetLowering::CanLowerReturn(
CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
return CCInfo.CheckReturn(Outs, RetCC_Xtensa);
}
SDValue
XtensaTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &DL, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
// Assign locations to each returned value.
SmallVector<CCValAssign, 16> RetLocs;
CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
RetCCInfo.AnalyzeReturn(Outs, RetCC_Xtensa);
SDValue Glue;
// Quick exit for void returns
if (RetLocs.empty())
return DAG.getNode(XtensaISD::RET, DL, MVT::Other, Chain);
// Copy the result values into the output registers.
SmallVector<SDValue, 4> RetOps;
RetOps.push_back(Chain);
for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
CCValAssign &VA = RetLocs[I];
SDValue RetValue = OutVals[I];
// Make the return register live on exit.
assert(VA.isRegLoc() && "Can only return in registers!");
// Chain and glue the copies together.
unsigned Register = VA.getLocReg();
Chain = DAG.getCopyToReg(Chain, DL, Register, RetValue, Glue);
Glue = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(Register, VA.getLocVT()));
}
// Update chain and glue.
RetOps[0] = Chain;
if (Glue.getNode())
RetOps.push_back(Glue);
return DAG.getNode(XtensaISD::RET, DL, MVT::Other, RetOps);
}
static unsigned getBranchOpcode(ISD::CondCode Cond) {
switch (Cond) {
case ISD::SETEQ:
return Xtensa::BEQ;
case ISD::SETNE:
return Xtensa::BNE;
case ISD::SETLT:
return Xtensa::BLT;
case ISD::SETLE:
return Xtensa::BGE;
case ISD::SETGT:
return Xtensa::BLT;
case ISD::SETGE:
return Xtensa::BGE;
case ISD::SETULT:
return Xtensa::BLTU;
case ISD::SETULE:
return Xtensa::BGEU;
case ISD::SETUGT:
return Xtensa::BLTU;
case ISD::SETUGE:
return Xtensa::BGEU;
default:
llvm_unreachable("Unknown branch kind");
}
}
SDValue XtensaTargetLowering::LowerSELECT_CC(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT Ty = Op.getOperand(0).getValueType();
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue TrueValue = Op.getOperand(2);
SDValue FalseValue = Op.getOperand(3);
ISD::CondCode CC = cast<CondCodeSDNode>(Op->getOperand(4))->get();
unsigned BrOpcode = getBranchOpcode(CC);
SDValue TargetCC = DAG.getConstant(BrOpcode, DL, MVT::i32);
return DAG.getNode(XtensaISD::SELECT_CC, DL, Ty, LHS, RHS, TrueValue,
FalseValue, TargetCC);
}
SDValue XtensaTargetLowering::LowerRETURNADDR(SDValue Op,
SelectionDAG &DAG) const {
// This nodes represent llvm.returnaddress on the DAG.
// It takes one operand, the index of the return address to return.
// An index of zero corresponds to the current function's return address.
// An index of one to the parent's return address, and so on.
// Depths > 0 not supported yet!
if (Op.getConstantOperandVal(0) != 0)
return SDValue();
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
EVT VT = Op.getValueType();
MFI.setReturnAddressIsTaken(true);
// Return RA, which contains the return address. Mark it an implicit
// live-in.
Register RA = MF.addLiveIn(Xtensa::A0, getRegClassFor(MVT::i32));
return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), RA, VT);
}
SDValue XtensaTargetLowering::LowerImmediate(SDValue Op,
SelectionDAG &DAG) const {
const ConstantSDNode *CN = cast<ConstantSDNode>(Op);
SDLoc DL(CN);
APInt APVal = CN->getAPIntValue();
int64_t Value = APVal.getSExtValue();
if (Op.getValueType() == MVT::i32) {
// Check if use node maybe lowered to the MOVI instruction
if (Value > -2048 && Value <= 2047)
return Op;
// Check if use node maybe lowered to the ADDMI instruction
SDNode &OpNode = *Op.getNode();
if ((OpNode.hasOneUse() && OpNode.use_begin()->getOpcode() == ISD::ADD) &&
isShiftedInt<16, 8>(Value))
return Op;
Type *Ty = Type::getInt32Ty(*DAG.getContext());
Constant *CV = ConstantInt::get(Ty, Value);
SDValue CP = DAG.getConstantPool(CV, MVT::i32);
return CP;
}
return Op;
}
SDValue XtensaTargetLowering::LowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
SDLoc DL(Op);
auto PtrVT = Op.getValueType();
const GlobalValue *GV = G->getGlobal();
SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, Align(4));
SDValue CPWrap = getAddrPCRel(CPAddr, DAG);
return CPWrap;
}
SDValue XtensaTargetLowering::LowerBlockAddress(SDValue Op,
SelectionDAG &DAG) const {
BlockAddressSDNode *Node = cast<BlockAddressSDNode>(Op);
const BlockAddress *BA = Node->getBlockAddress();
EVT PtrVT = Op.getValueType();
XtensaConstantPoolValue *CPV =
XtensaConstantPoolConstant::Create(BA, 0, XtensaCP::CPBlockAddress);
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
SDValue CPWrap = getAddrPCRel(CPAddr, DAG);
return CPWrap;
}
SDValue XtensaTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue Table = Op.getOperand(1);
SDValue Index = Op.getOperand(2);
SDLoc DL(Op);
JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
MachineFunction &MF = DAG.getMachineFunction();
const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
const DataLayout &TD = DAG.getDataLayout();
EVT PtrVT = Table.getValueType();
unsigned EntrySize = MJTI->getEntrySize(TD);
assert((MJTI->getEntrySize(TD) == 4) && "Unsupported jump-table entry size");
Index = DAG.getNode(
ISD::SHL, DL, Index.getValueType(), Index,
DAG.getConstant(Log2_32(EntrySize), DL, Index.getValueType()));
SDValue Addr = DAG.getNode(ISD::ADD, DL, Index.getValueType(), Index, Table);
SDValue LD =
DAG.getLoad(PtrVT, DL, Chain, Addr,
MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
return DAG.getNode(XtensaISD::BR_JT, DL, MVT::Other, LD.getValue(1), LD,
TargetJT);
}
SDValue XtensaTargetLowering::LowerJumpTable(SDValue Op,
SelectionDAG &DAG) const {
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
EVT PtrVT = Op.getValueType();
// Create a constant pool entry for the callee address
XtensaConstantPoolValue *CPV =
XtensaConstantPoolJumpTable::Create(*DAG.getContext(), JT->getIndex());
// Get the address of the callee into a register
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
return getAddrPCRel(CPAddr, DAG);
}
SDValue XtensaTargetLowering::getAddrPCRel(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT Ty = Op.getValueType();
return DAG.getNode(XtensaISD::PCREL_WRAPPER, DL, Ty, Op);
}
SDValue XtensaTargetLowering::LowerConstantPool(SDValue Op,
SelectionDAG &DAG) const {
EVT PtrVT = Op.getValueType();
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
SDValue Result;
if (!CP->isMachineConstantPoolEntry()) {
Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
CP->getOffset());
} else {
report_fatal_error("This constantpool type is not supported yet");
}
return getAddrPCRel(Result, DAG);
}
SDValue XtensaTargetLowering::LowerSTACKSAVE(SDValue Op,
SelectionDAG &DAG) const {
return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), Xtensa::SP,
Op.getValueType());
}
SDValue XtensaTargetLowering::LowerSTACKRESTORE(SDValue Op,
SelectionDAG &DAG) const {
return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op), Xtensa::SP,
Op.getOperand(1));
}
SDValue XtensaTargetLowering::LowerFRAMEADDR(SDValue Op,
SelectionDAG &DAG) const {
// This nodes represent llvm.frameaddress on the DAG.
// It takes one operand, the index of the frame address to return.
// An index of zero corresponds to the current function's frame address.
// An index of one to the parent's frame address, and so on.
// Depths > 0 not supported yet!
if (Op.getConstantOperandVal(0) != 0)
return SDValue();
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MFI.setFrameAddressIsTaken(true);
EVT VT = Op.getValueType();
SDLoc DL(Op);
Register FrameRegister = Subtarget.getRegisterInfo()->getFrameRegister(MF);
SDValue FrameAddr =
DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameRegister, VT);
return FrameAddr;
}
SDValue XtensaTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0); // Legalize the chain.
SDValue Size = Op.getOperand(1); // Legalize the size.
EVT VT = Size->getValueType(0);
SDLoc DL(Op);
// Round up Size to 32
SDValue SizeTmp =
DAG.getNode(ISD::ADD, DL, VT, Size, DAG.getConstant(31, DL, MVT::i32));
SDValue SizeRoundUp = DAG.getNode(ISD::AND, DL, VT, SizeTmp,
DAG.getSignedConstant(~31, DL, MVT::i32));
unsigned SPReg = Xtensa::SP;
SDValue SP = DAG.getCopyFromReg(Chain, DL, SPReg, VT);
SDValue NewSP = DAG.getNode(ISD::SUB, DL, VT, SP, SizeRoundUp); // Value
Chain = DAG.getCopyToReg(SP.getValue(1), DL, SPReg, NewSP); // Output chain
SDValue NewVal = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i32);
Chain = NewVal.getValue(1);
SDValue Ops[2] = {NewVal, Chain};
return DAG.getMergeValues(Ops, DL);
}
SDValue XtensaTargetLowering::LowerVASTART(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
XtensaMachineFunctionInfo *XtensaFI = MF.getInfo<XtensaMachineFunctionInfo>();
SDValue Chain = Op.getOperand(0);
SDValue Addr = Op.getOperand(1);
EVT PtrVT = Addr.getValueType();
SDLoc DL(Op);
// Struct va_list_tag
// int32 *va_stk - points to the arguments passed in memory
// int32 *va_reg - points to the registers with arguments saved in memory
// int32 va_ndx - offset from va_stk or va_reg pointers which points to the
// next variable argument
SDValue VAIndex;
SDValue StackOffsetFI =
DAG.getFrameIndex(XtensaFI->getVarArgsOnStackFrameIndex(), PtrVT);
unsigned ArgWords = XtensaFI->getVarArgsFirstGPR() - 2;
// If first variable argument passed in registers (maximum words in registers
// is 6) then set va_ndx to the position of this argument in registers area
// stored in memory (va_reg pointer). Otherwise va_ndx should point to the
// position of the first variable argument on stack (va_stk pointer).
if (ArgWords < 6) {
VAIndex = DAG.getConstant(ArgWords * 4, DL, MVT::i32);
} else {
VAIndex = DAG.getConstant(32, DL, MVT::i32);
}
SDValue FrameIndex =
DAG.getFrameIndex(XtensaFI->getVarArgsInRegsFrameIndex(), PtrVT);
uint64_t FrameOffset = PtrVT.getStoreSize();
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
// Store pointer to arguments given on stack (va_stk)
SDValue StackPtr = DAG.getNode(ISD::SUB, DL, PtrVT, StackOffsetFI,
DAG.getConstant(32, DL, PtrVT));
SDValue StoreStackPtr =
DAG.getStore(Chain, DL, StackPtr, Addr, MachinePointerInfo(SV));
uint64_t NextOffset = FrameOffset;
SDValue NextPtr =
DAG.getObjectPtrOffset(DL, Addr, TypeSize::getFixed(NextOffset));
// Store pointer to arguments given on registers (va_reg)
SDValue StoreRegPtr = DAG.getStore(StoreStackPtr, DL, FrameIndex, NextPtr,
MachinePointerInfo(SV, NextOffset));
NextOffset += FrameOffset;
NextPtr = DAG.getObjectPtrOffset(DL, Addr, TypeSize::getFixed(NextOffset));
// Store third word : position in bytes of the first VA argument (va_ndx)
return DAG.getStore(StoreRegPtr, DL, VAIndex, NextPtr,
MachinePointerInfo(SV, NextOffset));
}
SDValue XtensaTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
// Size of the va_list_tag structure
constexpr unsigned VAListSize = 3 * 4;
SDValue Chain = Op.getOperand(0);
SDValue DstPtr = Op.getOperand(1);
SDValue SrcPtr = Op.getOperand(2);
const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
SDLoc DL(Op);
return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
DAG.getConstant(VAListSize, SDLoc(Op), MVT::i32),
Align(4), /*isVolatile*/ false, /*AlwaysInline*/ true,
/*CI=*/nullptr, std::nullopt, MachinePointerInfo(DstSV),
MachinePointerInfo(SrcSV));
}
SDValue XtensaTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
SDNode *Node = Op.getNode();
EVT VT = Node->getValueType(0);
Type *Ty = VT.getTypeForEVT(*DAG.getContext());
EVT PtrVT = Op.getValueType();
SDValue InChain = Node->getOperand(0);
SDValue VAListPtr = Node->getOperand(1);
const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
SDLoc DL(Node);
auto &TD = DAG.getDataLayout();
Align ArgAlignment = TD.getABITypeAlign(Ty);
unsigned ArgAlignInBytes = ArgAlignment.value();
unsigned ArgSizeInBytes = TD.getTypeAllocSize(Ty);
unsigned VASizeInBytes = llvm::alignTo(ArgSizeInBytes, 4);