Skip to content

Potential outline of classification chapters #72

Open
@topepo

Description

@topepo

Here is what I'm thinking about in terms of structure:

(* means maybe we can discuss this?)

  • Chapter: Characterizing Classification Models
  • Chapter: Linear and Additive Classifiers
    • Intro Example: forestation
      • EDA
      • Feature engineering
    • Logistic regression
      • Maximum likelihood
      • Regularized
      • Bayesian estimation*
    • Multinomial regression
    • GAMs
    • LDA*
    • Naive Bayes
  • Chapter: Complex Nonlinear Boundaries
    • Nonlinear discriminant analysis
      • MDA
      • FDA
      • DANN*
    • Neural networks
      • Single layer, Feedforward
      • TabPFN
    • KNN
    • SVMs
  • Chapter: Classification using Trees and Rule
    • Elements of trees
      • Splitting
      • Growing
      • Pruning
      • Missing data handling
    • Single Trees
      • CART
      • C5.0
      • Conditional Inference
      • Oblique
    • Bagging
    • Random Forest
    • BART
    • Boosting
    • Rules
      • RuleFit
      • C5.0
  • Chapter: Classification summary
    • Final forested results
    • Other things:
      • Ordinal outcomes
      • Multilabel

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions