This repository was archived by the owner on Dec 16, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathtrainer_test.py
1269 lines (1132 loc) · 47.2 KB
/
trainer_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import copy
import glob
import json
import os
import re
import time
from typing import Any, Dict, List, Optional
import math
import pytest
import torch
from torch.nn.utils import clip_grad_norm_
from allennlp.common.checks import ConfigurationError
from allennlp.common.params import Params
from allennlp.common.testing import AllenNlpTestCase, requires_gpu, requires_multi_gpu
from allennlp.data import Vocabulary, Instance, Token
from allennlp.data.data_loaders import MultiProcessDataLoader, SimpleDataLoader, TensorDict
from allennlp.data.dataset_readers import SequenceTaggingDatasetReader, DatasetReader
from allennlp.data.token_indexers import SingleIdTokenIndexer
from allennlp.models.model import Model
from allennlp.models.simple_tagger import SimpleTagger
from allennlp.training import (
GradientDescentTrainer,
Checkpointer,
)
from allennlp.training.callbacks import (
TrainerCallback,
TrackEpochCallback,
TensorBoardCallback,
ConfidenceChecksCallback,
ConsoleLoggerCallback,
)
from allennlp.training.callbacks.confidence_checks import ConfidenceCheckError
from allennlp.training.learning_rate_schedulers import CosineWithRestarts
from allennlp.training.learning_rate_schedulers import ExponentialLearningRateScheduler
from allennlp.training.momentum_schedulers import MomentumScheduler
from allennlp.training.moving_average import ExponentialMovingAverage
from allennlp.data.fields import (
TextField,
IndexField,
MetadataField,
LabelField,
MultiLabelField,
SpanField,
FlagField,
AdjacencyField,
TensorField,
)
from allennlp.training.optimizers import Optimizer
from allennlp.common.testing.confidence_check_test import (
FakeModelForTestingNormalizationBiasVerification,
)
class FakeDatasetReader(DatasetReader):
def __init__(self, total_instances, batch_size):
super().__init__()
self.total_instances = total_instances
self.batch_size = batch_size
def _read(self, file_path):
for i in range(self.total_instances):
yield self.text_to_instance(i, "label")
def text_to_instance(self, index: int, field_type: str): # type: ignore
field = TextField(
[Token(t) for t in ["The", "number", "is", str(index), "."]],
token_indexers={"words": SingleIdTokenIndexer("words")},
)
return Instance(
{
"text": field,
"label": LabelField(index, skip_indexing=True),
"flag": FlagField(23),
"index": IndexField(index % self.batch_size, field),
"metadata": MetadataField({"some_key": "This will not be logged as a histogram."}),
"adjacency": AdjacencyField([(0, 1), (1, 2)], field),
"multilabel": MultiLabelField(["l1", "l2"]),
"span": SpanField(2, 3, field),
"tensor": TensorField(torch.randn(2, 3)),
}
)
class FakeModel(Model):
def __init__(self, vocab):
super().__init__(vocab)
self.lin = torch.nn.Linear(1, 2)
self.loss_fn = torch.nn.MSELoss()
def forward(self, **kwargs):
out = kwargs["label"].sum().unsqueeze(-1)
out = out.type(torch.FloatTensor)
out = self.lin(out)
loss = out.sum()
return {"loss": loss}
class TrainerTestBase(AllenNlpTestCase):
def setup_method(self):
super().setup_method()
self.data_path = str(self.FIXTURES_ROOT / "data" / "sequence_tagging.tsv")
self.reader = SequenceTaggingDatasetReader(max_instances=4)
self.data_loader = MultiProcessDataLoader(self.reader, self.data_path, batch_size=2)
self.data_loader_lazy = MultiProcessDataLoader(
self.reader, self.data_path, batch_size=2, max_instances_in_memory=10
)
self.instances = list(self.data_loader.iter_instances())
self.vocab = Vocabulary.from_instances(self.instances)
self.data_loader.index_with(self.vocab)
self.data_loader_lazy.index_with(self.vocab)
self.model_params = Params(
{
"text_field_embedder": {
"token_embedders": {"tokens": {"type": "embedding", "embedding_dim": 5}}
},
"encoder": {"type": "lstm", "input_size": 5, "hidden_size": 7, "num_layers": 2},
}
)
self.model = SimpleTagger.from_params(vocab=self.vocab, params=self.model_params)
self.optimizer = torch.optim.SGD(self.model.parameters(), 0.01, momentum=0.9)
self.validation_data_loader = MultiProcessDataLoader(
self.reader, self.data_path, batch_size=2
)
self.validation_data_loader.index_with(self.vocab)
class TestTrainer(TrainerTestBase):
def test_trainer_can_run(self):
trainer = GradientDescentTrainer(
model=self.model,
optimizer=self.optimizer,
data_loader=self.data_loader,
validation_data_loader=self.validation_data_loader,
num_epochs=2,
)
metrics = trainer.train()
assert "best_validation_loss" in metrics
assert isinstance(metrics["best_validation_loss"], float)
assert "best_validation_accuracy" in metrics
assert isinstance(metrics["best_validation_accuracy"], float)
assert "best_validation_accuracy3" in metrics
assert isinstance(metrics["best_validation_accuracy3"], float)
assert "best_epoch" in metrics
assert isinstance(metrics["best_epoch"], int)
# Making sure that both increasing and decreasing validation metrics work.
trainer = GradientDescentTrainer(
model=self.model,
optimizer=self.optimizer,
data_loader=self.data_loader,
validation_data_loader=self.validation_data_loader,
validation_metric="+loss",
num_epochs=2,
)
metrics = trainer.train()
assert "best_validation_loss" in metrics
assert isinstance(metrics["best_validation_loss"], float)
assert "best_validation_accuracy" in metrics
assert isinstance(metrics["best_validation_accuracy"], float)
assert "best_validation_accuracy3" in metrics
assert isinstance(metrics["best_validation_accuracy3"], float)
assert "best_epoch" in metrics
assert isinstance(metrics["best_epoch"], int)
assert "peak_worker_0_memory_MB" in metrics
assert isinstance(metrics["peak_worker_0_memory_MB"], float)
assert metrics["peak_worker_0_memory_MB"] > 0
def test_trainer_can_run_exponential_moving_average(self):
moving_average = ExponentialMovingAverage(self.model.named_parameters(), decay=0.9999)
trainer = GradientDescentTrainer(
model=self.model,
optimizer=self.optimizer,
data_loader=self.data_loader,
validation_data_loader=self.validation_data_loader,
num_epochs=2,
moving_average=moving_average,
)
trainer.train()
@requires_gpu
def test_trainer_can_run_cuda(self):
self.model.cuda()
trainer = GradientDescentTrainer(
self.model, self.optimizer, self.data_loader, num_epochs=2, cuda_device=0
)
metrics = trainer.train()
assert "peak_worker_0_memory_MB" in metrics
assert isinstance(metrics["peak_worker_0_memory_MB"], float)
assert metrics["peak_worker_0_memory_MB"] > 0
assert "peak_gpu_0_memory_MB" in metrics
assert isinstance(metrics["peak_gpu_0_memory_MB"], float)
@requires_multi_gpu
def test_passing_trainer_multiple_gpus_raises_error(self):
self.model.cuda()
with pytest.raises(ConfigurationError):
GradientDescentTrainer(
self.model,
self.optimizer,
self.data_loader,
num_epochs=2,
cuda_device=[0, 1],
)
def test_data_loader_lazy_epoch_size_correct(self):
num_epochs = 3
trainer = GradientDescentTrainer(
self.model,
self.optimizer,
self.data_loader_lazy,
validation_data_loader=self.validation_data_loader,
num_epochs=num_epochs,
serialization_dir=self.TEST_DIR,
)
assert trainer._batch_num_total == 0
metrics = trainer.train()
epoch = metrics["epoch"]
assert epoch == num_epochs - 1
assert trainer._batch_num_total == num_epochs * 2
def test_data_loader_lazy_epoch_size_correct_custom_epoch_size(self):
self.data_loader_lazy.batches_per_epoch = 3
num_epochs = 3
trainer = GradientDescentTrainer(
self.model,
self.optimizer,
self.data_loader_lazy,
validation_data_loader=self.validation_data_loader,
num_epochs=num_epochs,
serialization_dir=self.TEST_DIR,
)
assert trainer._batch_num_total == 0
metrics = trainer.train()
epoch = metrics["epoch"]
assert epoch == num_epochs - 1
assert trainer._batch_num_total == num_epochs * 3
def test_trainer_respects_epoch_size_equals_total(self):
batches_per_epoch = 4
num_epochs = 3
data_loader_equal_epoch = SimpleDataLoader(
self.instances,
2,
batches_per_epoch=batches_per_epoch,
)
trainer = GradientDescentTrainer(
self.model,
self.optimizer,
data_loader_equal_epoch,
validation_data_loader=self.validation_data_loader,
num_epochs=num_epochs,
serialization_dir=self.TEST_DIR,
)
assert trainer._batch_num_total == 0
metrics = trainer.train()
epoch = metrics["epoch"]
assert epoch == num_epochs - 1
assert trainer._batch_num_total == num_epochs * batches_per_epoch
def test_trainer_respects_epoch_size_larger_tnan_total(self):
batches_per_epoch = 7
num_epochs = 3
data_loader_larger_epoch = SimpleDataLoader(
self.instances,
2,
batches_per_epoch=batches_per_epoch,
)
trainer = GradientDescentTrainer(
self.model,
self.optimizer,
data_loader_larger_epoch,
validation_data_loader=self.validation_data_loader,
num_epochs=num_epochs,
serialization_dir=self.TEST_DIR,
)
assert trainer._batch_num_total == 0
metrics = trainer.train()
epoch = metrics["epoch"]
assert epoch == num_epochs - 1
assert trainer._batch_num_total == num_epochs * batches_per_epoch
def test_trainer_respects_epoch_size_smaller_tnan_total(self):
batches_per_epoch = 1
num_epochs = 2
data_loader_smaller_epoch = SimpleDataLoader(
self.instances,
2,
batches_per_epoch=batches_per_epoch,
)
trainer = GradientDescentTrainer(
self.model,
self.optimizer,
data_loader_smaller_epoch,
validation_data_loader=self.validation_data_loader,
num_epochs=num_epochs,
serialization_dir=self.TEST_DIR,
)
assert trainer._batch_num_total == 0
metrics = trainer.train()
epoch = metrics["epoch"]
assert epoch == num_epochs - 1
assert trainer._batch_num_total == num_epochs * batches_per_epoch
def test_trainer_can_resume_training(self):
trainer = GradientDescentTrainer(
self.model,
self.optimizer,
self.data_loader,
validation_data_loader=self.validation_data_loader,
num_epochs=1,
serialization_dir=self.TEST_DIR,
)
trainer.train()
new_trainer = GradientDescentTrainer(
self.model,
self.optimizer,
self.data_loader,
validation_data_loader=self.validation_data_loader,
num_epochs=3,
serialization_dir=self.TEST_DIR,
)
epoch = new_trainer._restore_checkpoint()
assert epoch == 1
tracker = trainer._metric_tracker
assert tracker.is_best_so_far()
assert tracker._best_so_far is not None
new_trainer.train()
def test_trainer_can_resume_training_for_exponential_moving_average(self):
moving_average = ExponentialMovingAverage(self.model.named_parameters())
trainer = GradientDescentTrainer(
self.model,
self.optimizer,
self.data_loader,
validation_data_loader=self.validation_data_loader,
num_epochs=1,
serialization_dir=self.TEST_DIR,
moving_average=moving_average,
)
trainer.train()
new_moving_average = ExponentialMovingAverage(self.model.named_parameters())
new_trainer = GradientDescentTrainer(
self.model,
self.optimizer,
self.data_loader,
validation_data_loader=self.validation_data_loader,
num_epochs=3,
serialization_dir=self.TEST_DIR,
moving_average=new_moving_average,
)
epoch = new_trainer._restore_checkpoint()
assert epoch == 1
tracker = trainer._metric_tracker
assert tracker.is_best_so_far()
assert tracker._best_so_far is not None
new_trainer.train()
def test_metric_only_considered_best_so_far_when_strictly_better_than_those_before_it_increasing_metric(
self,
):
new_trainer = GradientDescentTrainer(
self.model,
self.optimizer,
self.data_loader,
validation_data_loader=self.validation_data_loader,
num_epochs=3,
serialization_dir=self.TEST_DIR,
patience=5,
validation_metric="+acc",
)
tracker = new_trainer._metric_tracker
# when it is the only metric it should be considered the best
new_tracker = copy.deepcopy(tracker)
new_tracker.add_metrics({"acc": 1})
assert new_tracker.is_best_so_far()
# when it is the same as one before it it is not considered the best
new_tracker = copy.deepcopy(tracker)
for acc in [0.3, 0.3, 0.3, 0.2, 0.5, 0.1, 0.3]:
new_tracker.add_metrics({"acc": acc})
assert not new_tracker.is_best_so_far()
# when it is the best it is considered the best
new_tracker = copy.deepcopy(tracker)
for acc in [0.3, 0.3, 0.3, 0.2, 0.5, 0.1, 13]:
new_tracker.add_metrics({"acc": acc})
assert new_tracker.is_best_so_far()
# when it is not the the best it is not considered the best
new_tracker = copy.deepcopy(tracker)
for acc in [0.3, 0.3, 0.3, 0.2, 0.5, 0.1, 0.0013]:
new_tracker.add_metrics({"acc": acc})
assert not new_tracker.is_best_so_far()
def test_metric_only_considered_best_so_far_when_strictly_better_than_those_before_it_decreasing_metric(
self,
):
new_trainer = GradientDescentTrainer(
self.model,
self.optimizer,
self.data_loader,
validation_data_loader=self.validation_data_loader,
num_epochs=3,
serialization_dir=self.TEST_DIR,
patience=5,
validation_metric="-acc",
)
tracker = new_trainer._metric_tracker
# when it is the only metric it should be considered the best
new_tracker = copy.deepcopy(tracker)
new_tracker.add_metrics({"acc": 1})
assert new_tracker.is_best_so_far()
# when it is the same as one before it it is not considered the best
new_tracker = copy.deepcopy(tracker)
for acc in [0.3, 0.3, 0.3, 0.2, 0.5, 0.1, 0.3]:
new_tracker.add_metrics({"acc": acc})
assert not new_tracker.is_best_so_far()
# when it is the best it is considered the best
new_tracker = copy.deepcopy(tracker)
for acc in [0.3, 0.3, 0.3, 0.2, 0.5, 0.1, 0.0013]:
new_tracker.add_metrics({"acc": acc})
assert new_tracker.is_best_so_far()
# when it is not the the best it is not considered the best
new_tracker = copy.deepcopy(tracker)
for acc in [0.3, 0.3, 0.3, 0.2, 0.5, 0.1, 13]:
new_tracker.add_metrics({"acc": acc})
def test_should_stop_early_with_increasing_metric(self):
new_trainer = GradientDescentTrainer(
self.model,
self.optimizer,
self.data_loader,
validation_data_loader=self.validation_data_loader,
num_epochs=3,
serialization_dir=self.TEST_DIR,
patience=5,
validation_metric="+acc",
)
tracker = new_trainer._metric_tracker
new_tracker = copy.deepcopy(tracker)
for acc in [0.5, 0.3, 0.2, 0.1, 0.4, 0.4]:
new_tracker.add_metrics({"acc": acc})
assert new_tracker.should_stop_early()
new_tracker = copy.deepcopy(tracker)
for acc in [0.3, 0.3, 0.3, 0.2, 0.5, 0.1]:
new_tracker.add_metrics({"acc": acc})
assert not new_tracker.should_stop_early()
def test_should_stop_early_with_flat_lining_metric(self):
flatline = [{"acc": 0.2}] * 6
tracker = GradientDescentTrainer(
self.model,
self.optimizer,
self.data_loader,
validation_data_loader=self.validation_data_loader,
num_epochs=3,
serialization_dir=self.TEST_DIR,
patience=5,
validation_metric="+acc",
)._metric_tracker
for m in flatline:
tracker.add_metrics(m)
assert tracker.should_stop_early
tracker = GradientDescentTrainer(
self.model,
self.optimizer,
self.data_loader,
validation_data_loader=self.validation_data_loader,
num_epochs=3,
serialization_dir=self.TEST_DIR,
patience=5,
validation_metric="-acc",
)._metric_tracker
for m in flatline:
tracker.add_metrics(m)
assert tracker.should_stop_early
def test_should_stop_early_with_decreasing_metric(self):
new_trainer = GradientDescentTrainer(
self.model,
self.optimizer,
self.data_loader,
validation_data_loader=self.validation_data_loader,
num_epochs=3,
serialization_dir=self.TEST_DIR,
patience=5,
validation_metric="-acc",
)
tracker = new_trainer._metric_tracker
new_tracker = copy.deepcopy(tracker)
for acc in [0.02, 0.3, 0.2, 0.1, 0.4, 0.4]:
new_tracker.add_metrics({"acc": acc})
assert new_tracker.should_stop_early()
new_tracker = copy.deepcopy(tracker)
for acc in [0.3, 0.3, 0.2, 0.1, 0.4, 0.5]:
new_tracker.add_metrics({"acc": acc})
assert not new_tracker.should_stop_early()
new_tracker = copy.deepcopy(tracker)
for acc in [0.1, 0.3, 0.2, 0.1, 0.4, 0.5]:
new_tracker.add_metrics({"acc": acc})
assert new_tracker.should_stop_early()
def test_should_stop_early_with_early_stopping_disabled(self):
# Increasing metric
trainer = GradientDescentTrainer(
self.model,
self.optimizer,
self.data_loader,
validation_data_loader=self.validation_data_loader,
num_epochs=100,
patience=None,
validation_metric="+acc",
)
tracker = trainer._metric_tracker
for m in [{"acc": float(i)} for i in reversed(range(20))]:
tracker.add_metrics(m)
assert not tracker.should_stop_early()
# Decreasing metric
trainer = GradientDescentTrainer(
self.model,
self.optimizer,
self.data_loader,
validation_data_loader=self.validation_data_loader,
num_epochs=100,
patience=None,
validation_metric="-acc",
)
tracker = trainer._metric_tracker
for m in [{"acc": float(i)} for i in range(20)]:
tracker.add_metrics(m)
assert not tracker.should_stop_early()
def test_should_stop_early_with_invalid_patience(self):
for patience in [0, -1, -2, 1.5, "None"]:
with pytest.raises(
ConfigurationError,
match='.* is an invalid value for "patience": '
"it must be a positive integer or None "
"\\(if you want to disable early stopping\\)",
):
GradientDescentTrainer(
self.model,
self.optimizer,
self.data_loader,
validation_data_loader=self.validation_data_loader,
num_epochs=100,
patience=patience,
validation_metric="+acc",
)
def test_trainer_can_run_and_resume_with_momentum_scheduler(self):
scheduler = MomentumScheduler.from_params(
optimizer=self.optimizer,
params=Params({"type": "inverted_triangular", "cool_down": 2, "warm_up": 2}),
)
trainer = GradientDescentTrainer(
model=self.model,
optimizer=self.optimizer,
data_loader=self.data_loader,
momentum_scheduler=scheduler,
validation_metric="-loss",
validation_data_loader=self.validation_data_loader,
num_epochs=4,
serialization_dir=self.TEST_DIR,
)
trainer.train()
new_scheduler = MomentumScheduler.from_params(
optimizer=self.optimizer,
params=Params({"type": "inverted_triangular", "cool_down": 2, "warm_up": 2}),
)
new_trainer = GradientDescentTrainer(
model=self.model,
optimizer=self.optimizer,
data_loader=self.data_loader,
momentum_scheduler=new_scheduler,
validation_metric="-loss",
validation_data_loader=self.validation_data_loader,
num_epochs=6,
serialization_dir=self.TEST_DIR,
)
epoch = new_trainer._restore_checkpoint()
assert epoch == 4
assert new_trainer._momentum_scheduler.last_epoch == 3
new_trainer.train()
def test_trainer_can_run_with_lr_scheduler(self):
lr_scheduler = ExponentialLearningRateScheduler(self.optimizer, gamma=0.5)
trainer = GradientDescentTrainer(
model=self.model,
optimizer=self.optimizer,
data_loader=self.data_loader,
learning_rate_scheduler=lr_scheduler,
validation_metric="-loss",
validation_data_loader=self.validation_data_loader,
num_epochs=2,
)
trainer.train()
def test_trainer_sends_metric_to_lr_scheduler(self):
from allennlp.training.learning_rate_schedulers import ReduceOnPlateauLearningRateScheduler
class RecordMetricLearningRateScheduler(ReduceOnPlateauLearningRateScheduler):
def __init__(self, optimizer: Optimizer):
super(RecordMetricLearningRateScheduler, self).__init__(optimizer)
self.recordings: List[float] = []
def step(self, metric: float = None) -> None:
self.recordings.append(metric)
super().step(metric)
lr_scheduler = RecordMetricLearningRateScheduler(self.optimizer)
trainer = GradientDescentTrainer(
model=self.model,
optimizer=self.optimizer,
data_loader=self.data_loader,
learning_rate_scheduler=lr_scheduler,
validation_metric="-loss",
validation_data_loader=self.validation_data_loader,
num_epochs=2,
)
trainer.train()
assert all([value != 0 for value in lr_scheduler.recordings])
def test_trainer_can_resume_with_lr_scheduler(self):
lr_scheduler = CosineWithRestarts(self.optimizer, t_initial=5)
trainer = GradientDescentTrainer(
model=self.model,
optimizer=self.optimizer,
data_loader=self.data_loader,
learning_rate_scheduler=lr_scheduler,
validation_data_loader=self.validation_data_loader,
num_epochs=2,
serialization_dir=self.TEST_DIR,
)
trainer.train()
new_lr_scheduler = CosineWithRestarts(self.optimizer, t_initial=5)
new_trainer = GradientDescentTrainer(
model=self.model,
optimizer=self.optimizer,
data_loader=self.data_loader,
learning_rate_scheduler=new_lr_scheduler,
validation_data_loader=self.validation_data_loader,
num_epochs=4,
serialization_dir=self.TEST_DIR,
)
epoch = new_trainer._restore_checkpoint()
assert epoch == 2
assert new_trainer._learning_rate_scheduler.last_epoch == 1
new_trainer.train()
def test_trainer_raises_on_model_with_no_loss_key(self):
class FakeModel(Model):
def forward(self, **kwargs):
return {}
with pytest.raises(RuntimeError):
trainer = GradientDescentTrainer(
FakeModel(None),
self.optimizer,
self.data_loader,
num_epochs=2,
serialization_dir=self.TEST_DIR,
)
trainer.train()
def test_trainer_can_log_histograms(self):
# enable activation logging
for module in self.model.modules():
module.should_log_activations = True
trainer = GradientDescentTrainer(
self.model,
self.optimizer,
self.data_loader,
num_epochs=3,
serialization_dir=self.TEST_DIR,
callbacks=[
TensorBoardCallback(
serialization_dir=self.TEST_DIR,
distribution_interval=2,
)
],
)
trainer.train()
def test_trainer_respects_num_serialized_models_to_keep(self):
trainer = GradientDescentTrainer(
self.model,
self.optimizer,
self.data_loader,
num_epochs=5,
serialization_dir=self.TEST_DIR,
checkpointer=Checkpointer(
serialization_dir=self.TEST_DIR, num_serialized_models_to_keep=3
),
)
trainer.train()
# Now check the serialized files
for prefix in ["model_state_epoch_*", "training_state_epoch_*"]:
file_names = glob.glob(os.path.join(self.TEST_DIR, prefix))
epochs = [int(re.search(r"_([0-9])\.th", fname).group(1)) for fname in file_names]
assert sorted(epochs) == [2, 3, 4]
def test_trainer_saves_metrics_every_epoch(self):
trainer = GradientDescentTrainer(
model=self.model,
optimizer=self.optimizer,
data_loader=self.data_loader,
validation_data_loader=self.validation_data_loader,
num_epochs=5,
serialization_dir=self.TEST_DIR,
checkpointer=Checkpointer(
serialization_dir=self.TEST_DIR, num_serialized_models_to_keep=3
),
)
trainer.train()
for epoch in range(5):
epoch_file = self.TEST_DIR / f"metrics_epoch_{epoch}.json"
assert epoch_file.exists()
metrics = json.load(open(epoch_file))
assert "validation_loss" in metrics
assert "best_validation_loss" in metrics
assert metrics.get("epoch") == epoch
def test_trainer_respects_keep_serialized_model_every_num_seconds(self):
# To test:
# Create an fake data loader that sleeps for 2.5 second per epoch, so the total
# training time for one epoch is slightly greater then 2.5 seconds.
# Run for 6 epochs, keeping the last 2 models, models also kept every 5 seconds.
# Check the resulting checkpoints. Should then have models at epochs
# 2, 4, plus the last two at 5 and 6.
class SlowDataLoader:
data_loader = SimpleDataLoader(self.instances, batch_size=2)
def __iter__(self):
time.sleep(2.5)
return iter(self.data_loader)
def __len__(self):
return len(self.data_loader)
def set_target_device(self, _):
pass
trainer = GradientDescentTrainer(
self.model,
self.optimizer,
SlowDataLoader(),
num_epochs=6,
serialization_dir=self.TEST_DIR,
checkpointer=Checkpointer(
serialization_dir=self.TEST_DIR,
num_serialized_models_to_keep=2,
keep_serialized_model_every_num_seconds=5,
),
)
trainer.train()
# Now check the serialized files
for prefix in ["model_state_epoch_*", "training_state_epoch_*"]:
file_names = glob.glob(os.path.join(self.TEST_DIR, prefix))
epochs = [int(re.search(r"_([0-9])\.th", fname).group(1)) for fname in file_names]
# epoch N has N-1 in file name
assert sorted(epochs) == [1, 3, 4, 5]
def test_trainer_can_log_learning_rates_tensorboard(self):
data_loader = SimpleDataLoader(self.instances, 4)
trainer = GradientDescentTrainer(
self.model,
self.optimizer,
data_loader,
num_epochs=2,
serialization_dir=self.TEST_DIR,
callbacks=[
TensorBoardCallback(
serialization_dir=self.TEST_DIR,
summary_interval=2,
should_log_learning_rate=True,
)
],
)
trainer.train()
def test_confidence_check_callback(self):
model_with_bias = FakeModelForTestingNormalizationBiasVerification(use_bias=True)
inst = Instance({"x": TensorField(torch.rand(3, 1, 4))})
data_loader = SimpleDataLoader([inst, inst], 2)
trainer = GradientDescentTrainer(
model_with_bias,
self.optimizer,
data_loader,
num_epochs=1,
serialization_dir=self.TEST_DIR,
callbacks=[ConfidenceChecksCallback(serialization_dir=self.TEST_DIR)],
)
with pytest.raises(ConfidenceCheckError):
trainer.train()
def test_confidence_check_default(self):
model_with_bias = FakeModelForTestingNormalizationBiasVerification(use_bias=True)
inst = Instance({"x": TensorField(torch.rand(3, 1, 4))})
data_loader = SimpleDataLoader([inst, inst], 2)
trainer = GradientDescentTrainer.from_partial_objects(
model_with_bias,
serialization_dir=self.TEST_DIR,
data_loader=data_loader,
num_epochs=1,
)
with pytest.raises(ConfidenceCheckError):
trainer.train()
trainer = GradientDescentTrainer.from_partial_objects(
model_with_bias,
serialization_dir=self.TEST_DIR,
data_loader=data_loader,
num_epochs=1,
run_confidence_checks=False,
)
# Check is not run, so no failure.
trainer.train()
def test_trainer_saves_models_at_specified_interval(self):
data_loader = SimpleDataLoader(self.instances, 4)
trainer = GradientDescentTrainer(
self.model,
self.optimizer,
data_loader,
num_epochs=2,
serialization_dir=self.TEST_DIR,
checkpointer=Checkpointer(
serialization_dir=self.TEST_DIR,
model_save_interval=0.0001,
num_serialized_models_to_keep=10,
),
)
trainer.train()
# Now check the serialized files for models saved during the epoch.
prefix = "model_state_epoch_*"
file_names = sorted(glob.glob(os.path.join(self.TEST_DIR, prefix)))
epochs = [re.search(r"_([0-9\.\-]+)\.th", fname).group(1) for fname in file_names]
# We should have checkpoints at the end of each epoch and during each, e.g.
# [0.timestamp, 0, 1.timestamp, 1]
assert len(epochs) == 4
assert epochs[3] == "1"
assert "." in epochs[0]
# Now make certain we can restore from timestamped checkpoint.
# To do so, remove the checkpoint from the end of epoch 1&2, so
# that we are forced to restore from the timestamped checkpoints.
for k in range(2):
os.remove(os.path.join(self.TEST_DIR, "model_state_epoch_{}.th".format(k)))
os.remove(os.path.join(self.TEST_DIR, "training_state_epoch_{}.th".format(k)))
os.remove(os.path.join(self.TEST_DIR, "best.th"))
restore_trainer = GradientDescentTrainer(
self.model,
self.optimizer,
self.data_loader,
num_epochs=2,
serialization_dir=self.TEST_DIR,
checkpointer=Checkpointer(serialization_dir=self.TEST_DIR, model_save_interval=0.0001),
)
epoch = restore_trainer._restore_checkpoint()
assert epoch == 2
# One batch per epoch.
assert restore_trainer._batch_num_total == 2
def test_trainer_saves_and_loads_best_validation_metrics_correctly_1(self):
# Use -loss and run 1 epoch of original-training, and one of restored-training
# Run 1 epoch of original training.
trainer = GradientDescentTrainer(
self.model,
self.optimizer,
self.data_loader,
validation_data_loader=self.validation_data_loader,
validation_metric="-loss",
num_epochs=1,
serialization_dir=self.TEST_DIR,
)
trainer.train()
_ = trainer._restore_checkpoint()
best_epoch_1 = trainer._metric_tracker.best_epoch
best_validation_metrics_epoch_1 = trainer._metric_tracker.best_epoch_metrics
# best_validation_metrics_epoch_1: {'accuracy': 0.75, 'accuracy3': 1.0, 'loss': 0.6243013441562653}
assert isinstance(best_validation_metrics_epoch_1, dict)
assert "loss" in best_validation_metrics_epoch_1
# Run 1 epoch of restored training.
restore_trainer = GradientDescentTrainer(
self.model,
self.optimizer,
self.data_loader,
validation_data_loader=self.validation_data_loader,
validation_metric="-loss",
num_epochs=2,
serialization_dir=self.TEST_DIR,
)
restore_trainer.train()
_ = restore_trainer._restore_checkpoint()
best_epoch_2 = restore_trainer._metric_tracker.best_epoch
best_validation_metrics_epoch_2 = restore_trainer._metric_tracker.best_epoch_metrics
# Because of using -loss, 2nd epoch would be better than 1st. So best val metrics should not be same.
assert best_epoch_1 == 0 and best_epoch_2 == 1
assert best_validation_metrics_epoch_2 != best_validation_metrics_epoch_1
def test_trainer_saves_and_loads_best_validation_metrics_correctly_2(self):
# Use -loss and run 1 epoch of original-training, and one of restored-training
# Run 1 epoch of original training.
trainer = GradientDescentTrainer(
self.model,
self.optimizer,
self.data_loader,
validation_data_loader=self.validation_data_loader,
validation_metric="+loss",
num_epochs=1,
serialization_dir=self.TEST_DIR,
)
trainer.train()
_ = trainer._restore_checkpoint()
best_epoch_1 = trainer._metric_tracker.best_epoch
best_validation_metrics_epoch_1 = trainer._metric_tracker.best_epoch_metrics
# best_validation_metrics_epoch_1: {'accuracy': 0.75, 'accuracy3': 1.0, 'loss': 0.6243013441562653}
assert isinstance(best_validation_metrics_epoch_1, dict)
assert "loss" in best_validation_metrics_epoch_1
# Run 1 more epoch of restored training.
restore_trainer = GradientDescentTrainer(
self.model,
self.optimizer,
self.data_loader,
validation_data_loader=self.validation_data_loader,
validation_metric="+loss",
num_epochs=2,
serialization_dir=self.TEST_DIR,
)
restore_trainer.train()
_ = restore_trainer._restore_checkpoint()
best_epoch_2 = restore_trainer._metric_tracker.best_epoch
best_validation_metrics_epoch_2 = restore_trainer._metric_tracker.best_epoch_metrics
# Because of using +loss, 2nd epoch won't be better than 1st. So best val metrics should be same.
assert best_epoch_1 == best_epoch_2 == 0
assert best_validation_metrics_epoch_2 == best_validation_metrics_epoch_1
def test_restored_training_returns_best_epoch_metrics_even_if_no_better_epoch_is_found_after_restoring(
self,
):
# Instead of -loss, use +loss to assure 2nd epoch is considered worse.
# Run 1 epoch of original training.
original_trainer = GradientDescentTrainer(
self.model,
self.optimizer,
self.data_loader,
validation_data_loader=self.validation_data_loader,
validation_metric="+loss",
num_epochs=1,
serialization_dir=self.TEST_DIR,
)
training_metrics = original_trainer.train()
# Run 1 epoch of restored training.