This repository was archived by the owner on Dec 16, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathtoolkit_test.py
201 lines (169 loc) · 8.2 KB
/
toolkit_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import pytest
import torch
from torch.testing import assert_allclose
from overrides import overrides
from transformers import AutoModel
from transformers.models.albert.modeling_albert import AlbertEmbeddings
from allennlp.common import cached_transformers
from allennlp.data.vocabulary import Vocabulary
from allennlp.modules.token_embedders import Embedding, TokenEmbedder
from allennlp.modules.transformer import TransformerStack, TransformerEmbeddings, TransformerPooler
from allennlp.common.testing import AllenNlpTestCase
class TestTransformerToolkit(AllenNlpTestCase):
def setup_method(self):
super().setup_method()
self.vocab = Vocabulary()
# populate vocab.
self.vocab.add_token_to_namespace("word")
self.vocab.add_token_to_namespace("the")
self.vocab.add_token_to_namespace("an")
def test_create_embedder_using_toolkit(self):
embedding_file = str(self.FIXTURES_ROOT / "embeddings/glove.6B.300d.sample.txt.gz")
class TinyTransformer(TokenEmbedder):
def __init__(self, vocab, embedding_dim, hidden_size, intermediate_size):
super().__init__()
self.embeddings = Embedding(
pretrained_file=embedding_file,
embedding_dim=embedding_dim,
projection_dim=hidden_size,
vocab=vocab,
)
self.transformer = TransformerStack(
num_hidden_layers=4,
hidden_size=hidden_size,
intermediate_size=intermediate_size,
)
@overrides
def forward(self, token_ids: torch.LongTensor):
x = self.embeddings(token_ids)
x = self.transformer(x)
return x
tiny = TinyTransformer(self.vocab, embedding_dim=300, hidden_size=80, intermediate_size=40)
tiny.forward(torch.LongTensor([[0, 1, 2]]))
def test_use_first_four_layers_of_pretrained(self):
pretrained = "bert-base-cased"
class SmallTransformer(TokenEmbedder):
def __init__(self):
super().__init__()
self.embeddings = TransformerEmbeddings.from_pretrained_module(
pretrained, relevant_module="bert.embeddings"
)
self.transformer = TransformerStack.from_pretrained_module(
pretrained,
num_hidden_layers=4,
relevant_module="bert.encoder",
strict=False,
)
@overrides
def forward(self, token_ids: torch.LongTensor):
x = self.embeddings(token_ids)
x = self.transformer(x)
return x
small = SmallTransformer()
assert len(small.transformer.layers) == 4
small(torch.LongTensor([[0, 1, 2]]))
def test_use_selected_layers_of_bert_for_different_purposes(self):
class MediumTransformer(torch.nn.Module):
def __init__(self):
super().__init__()
self.embeddings = TransformerEmbeddings.from_pretrained_module(
"bert-base-cased", relevant_module="bert.embeddings"
)
self.separate_transformer = TransformerStack.from_pretrained_module(
"bert-base-cased",
relevant_module="bert.encoder",
num_hidden_layers=8,
strict=False,
)
self.combined_transformer = TransformerStack.from_pretrained_module(
"bert-base-cased",
relevant_module="bert.encoder",
num_hidden_layers=4,
mapping={f"layer.{l}": f"layers.{i}" for (i, l) in enumerate(range(8, 12))},
strict=False,
)
@overrides
def forward(
self,
left_token_ids: torch.LongTensor,
right_token_ids: torch.LongTensor,
):
left = self.embeddings(left_token_ids)
left = self.separate_transformer(left)
right = self.embeddings(right_token_ids)
right = self.separate_transformer(right)
# combine the sequences in some meaningful way. here, we just add them.
# combined = combine_masked_sequences(left, left_mask, right, right_mask)
combined = left + right
return self.combined_transformer(combined)
medium = MediumTransformer()
assert (len(medium.separate_transformer.layers)) == 8
assert (len(medium.combined_transformer.layers)) == 4
pretrained = cached_transformers.get("bert-base-cased", False)
pretrained_layers = dict(pretrained.encoder.layer.named_modules())
separate_layers = dict(medium.separate_transformer.layers.named_modules())
assert_allclose(
separate_layers["0"].intermediate.dense.weight.data,
pretrained_layers["0"].intermediate.dense.weight.data,
)
combined_layers = dict(medium.combined_transformer.layers.named_modules())
assert_allclose(
combined_layers["0"].intermediate.dense.weight.data,
pretrained_layers["8"].intermediate.dense.weight.data,
)
assert_allclose(
combined_layers["1"].intermediate.dense.weight.data,
pretrained_layers["9"].intermediate.dense.weight.data,
)
assert_allclose(
combined_layers["2"].intermediate.dense.weight.data,
pretrained_layers["10"].intermediate.dense.weight.data,
)
assert_allclose(
combined_layers["3"].intermediate.dense.weight.data,
pretrained_layers["11"].intermediate.dense.weight.data,
)
def test_combination_of_two_different_berts(self):
# Regular BERT, but with AlBERT's special compressed embedding scheme
class AlmostRegularTransformer(TokenEmbedder):
def __init__(self):
super().__init__()
self.embeddings = AutoModel.from_pretrained("albert-base-v2").embeddings
self.transformer = TransformerStack.from_pretrained_module(
"bert-base-cased", relevant_module="bert.encoder"
)
# We want to tune only the embeddings, because that's our experiment.
self.transformer.requires_grad = False
@overrides
def forward(self, token_ids: torch.LongTensor, mask: torch.BoolTensor):
x = self.embeddings(token_ids, mask)
x = self.transformer(x)
return x
almost = AlmostRegularTransformer()
assert len(almost.transformer.layers) == 12
assert isinstance(almost.embeddings, AlbertEmbeddings)
@pytest.mark.parametrize("model_name", ["bert-base-cased", "roberta-base"])
def test_end_to_end(self, model_name: str):
data = [
("I'm against picketing", "but I don't know how to show it."),
("I saw a human pyramid once.", "It was very unnecessary."),
]
tokenizer = cached_transformers.get_tokenizer(model_name)
batch = tokenizer.batch_encode_plus(data, padding=True, return_tensors="pt")
with torch.no_grad():
huggingface_model = cached_transformers.get(model_name, make_copy=False).eval()
huggingface_output = huggingface_model(**batch)
embeddings = TransformerEmbeddings.from_pretrained_module(model_name).eval()
transformer_stack = TransformerStack.from_pretrained_module(model_name).eval()
pooler = TransformerPooler.from_pretrained_module(model_name).eval()
batch["attention_mask"] = batch["attention_mask"].to(torch.bool)
output = embeddings(**batch)
output = transformer_stack(output, batch["attention_mask"])
assert_allclose(
output.final_hidden_states,
huggingface_output.last_hidden_state,
rtol=0.0001,
atol=1e-4,
)
output = pooler(output.final_hidden_states)
assert_allclose(output, huggingface_output.pooler_output, rtol=0.0001, atol=1e-4)